Source code for pyiron.atomistics.master.phonopy

# coding: utf-8
# Copyright (c) Max-Planck-Institut für Eisenforschung GmbH - Computational Materials Design (CM) Department
# Distributed under the terms of "New BSD License", see the LICENSE file.

import codecs
import pickle

import numpy as np
import posixpath
import scipy.constants
from phonopy import Phonopy
from phonopy.structure.atoms import PhonopyAtoms
from phonopy.units import VaspToTHz
from phonopy.file_IO import write_FORCE_CONSTANTS

from pyiron.atomistics.structure.atoms import Atoms
from pyiron.atomistics.master.parallel import AtomisticParallelMaster
from pyiron.atomistics.structure.phonopy import publication as phonopy_publication
from pyiron_base import JobGenerator, Settings

__author__ = "Jan Janssen, Yury Lysogorskiy"
__copyright__ = (
    "Copyright 2020, Max-Planck-Institut für Eisenforschung GmbH - "
    "Computational Materials Design (CM) Department"
)
__version__ = "1.0"
__maintainer__ = "Jan Janssen"
__email__ = "janssen@mpie.de"
__status__ = "development"
__date__ = "Sep 1, 2017"

s = Settings()


[docs]class thermal(object): """ Args: temps: fe: entropy: cv: """ def __init__(self, temps, fe, entropy, cv): KJ_mol_to_eV = 0.01036410 self.temperatures = temps self.free_energies = fe * KJ_mol_to_eV self.entropy = entropy self.cv = cv
[docs]def phonopy_to_atoms(ph_atoms): """ Convert Phonopy Atoms to ASE-like Atoms Args: ph_atoms: Phonopy Atoms object Returns: ASE-like Atoms object """ return Atoms( symbols=list(ph_atoms.get_chemical_symbols()), positions=list(ph_atoms.get_positions()), cell=list(ph_atoms.get_cell()), pbc=True )
[docs]def atoms_to_phonopy(atom): """ Convert ASE-like Atoms to Phonopy Atoms Args: atom: ASE-like Atoms Returns: Phonopy Atoms """ return PhonopyAtoms( symbols=list(atom.get_chemical_symbols()), scaled_positions=list(atom.get_scaled_positions()), cell=list(atom.get_cell()), )
[docs]class PhonopyJobGenerator(JobGenerator): @property def parameter_list(self): """ Returns: (list) """ supercells = self._job.phonopy.get_supercells_with_displacements() return [ ["{}_{}".format(self._job.ref_job.job_name, ind), self._restore_magmoms(phonopy_to_atoms(sc))] for ind, sc in enumerate(supercells) ] def _restore_magmoms(self, structure): """ Args: structure (pyiron.atomistics.structure.atoms): input structure Returns: structure (pyiron.atomistics.structure.atoms): output structure with magnetic moments """ if any(self._job.structure.get_initial_magnetic_moments()!=None): magmoms = self._job.structure.get_initial_magnetic_moments() magmoms = np.tile(magmoms, np.prod(np.diagonal(self._job._phonopy_supercell_matrix())).astype(int)) structure.set_initial_magnetic_moments(magmoms) return structure
[docs] @staticmethod def job_name(parameter): return parameter[0]
[docs] def modify_job(self, job, parameter): job.structure = parameter[1] return job
[docs]class PhonopyJob(AtomisticParallelMaster): """ Args: project: job_name: """ def __init__(self, project, job_name): super(PhonopyJob, self).__init__(project, job_name) self.__name__ = "PhonopyJob" self.__version__ = "0.0.1" self.input["interaction_range"] = (10.0, "Minimal size of supercell, Ang") self.input["factor"] = ( VaspToTHz, "Frequency unit conversion factor (default for VASP)", ) self.input["displacement"] = (0.01, "atoms displacement, Ang") self.input["dos_mesh"] = (20, "mesh size for DOS calculation") self.phonopy = None self._job_generator = PhonopyJobGenerator(self) self._disable_phonopy_pickle = False s.publication_add(phonopy_publication()) @property def phonopy_pickling_disabled(self): return self._disable_phonopy_pickle @phonopy_pickling_disabled.setter def phonopy_pickling_disabled(self, disable): self._disable_phonopy_pickle = disable @property def _phonopy_unit_cell(self): if self.structure is not None: return atoms_to_phonopy(self.structure) else: return None def _enable_phonopy(self): if self.phonopy is None: if self.structure is not None: self.phonopy = Phonopy( unitcell=self._phonopy_unit_cell, supercell_matrix=self._phonopy_supercell_matrix(), factor=self.input["factor"], ) self.phonopy.generate_displacements(distance=self.input["displacement"]) self.to_hdf() else: raise ValueError("No reference job/ No reference structure found.")
[docs] def list_structures(self): if self.structure is not None: self._enable_phonopy() return [struct for _, struct in self._job_generator.parameter_list] else: return []
def _phonopy_supercell_matrix(self): if self.structure is not None: supercell_range = np.ceil( self.input["interaction_range"] / np.array( [np.linalg.norm(vec) for vec in self._phonopy_unit_cell.get_cell()] ) ) return np.eye(3) * supercell_range else: return np.eye(3)
[docs] def run_static(self): # Initialise the phonopy object before starting the first calculation. self._enable_phonopy() super(PhonopyJob, self).run_static()
[docs] def run_if_interactive(self): self._enable_phonopy() super(PhonopyJob, self).run_if_interactive()
[docs] def to_hdf(self, hdf=None, group_name=None): """ Store the PhonopyJob in an HDF5 file Args: hdf (ProjectHDFio): HDF5 group object - optional group_name (str): HDF5 subgroup name - optional """ super(PhonopyJob, self).to_hdf(hdf=hdf, group_name=group_name) if self.phonopy is not None and not self._disable_phonopy_pickle: with self.project_hdf5.open("output") as hdf5_output: hdf5_output["phonopy_pickeled"] = codecs.encode( pickle.dumps(self.phonopy), "base64" ).decode()
[docs] def from_hdf(self, hdf=None, group_name=None): """ Restore the PhonopyJob from an HDF5 file Args: hdf (ProjectHDFio): HDF5 group object - optional group_name (str): HDF5 subgroup name - optional """ super(PhonopyJob, self).from_hdf(hdf=hdf, group_name=group_name) with self.project_hdf5.open("output") as hdf5_output: if "phonopy_pickeled" in hdf5_output.list_nodes(): self.phonopy = pickle.loads( codecs.decode(hdf5_output["phonopy_pickeled"].encode(), "base64") ) if "dos_total" in hdf5_output.list_nodes(): self._dos_total = hdf5_output["dos_total"] if "dos_energies" in hdf5_output.list_nodes(): self._dos_energies = hdf5_output["dos_energies"]
[docs] def collect_output(self): """ Returns: """ if self.ref_job.server.run_mode.interactive: forces_lst = self.project_hdf5.inspect(self.child_ids[0])[ "output/generic/forces" ] else: pr_job = self.project_hdf5.project.open(self.job_name + "_hdf5") forces_lst = [ pr_job.inspect(job_name)["output/generic/forces"][-1] for job_name in self._get_jobs_sorted() ] self.phonopy.set_forces(forces_lst) self.phonopy.produce_force_constants() self.phonopy.run_mesh(mesh=[self.input["dos_mesh"]] * 3) mesh_dict = self.phonopy.get_mesh_dict() self.phonopy.run_total_dos() dos_dict = self.phonopy.get_total_dos_dict() self.to_hdf() with self.project_hdf5.open("output") as hdf5_out: hdf5_out["dos_total"] = dos_dict['total_dos'] hdf5_out["dos_energies"] = dos_dict['frequency_points'] hdf5_out["qpoints"] = mesh_dict['qpoints'] hdf5_out["supercell_matrix"] = self._phonopy_supercell_matrix() hdf5_out["displacement_dataset"] = self.phonopy.get_displacement_dataset() hdf5_out[ "dynamical_matrix" ] = self.phonopy.dynamical_matrix.get_dynamical_matrix() hdf5_out["force_constants"] = self.phonopy.force_constants
[docs] def write_phonopy_force_constants(self, file_name="FORCE_CONSTANTS", cwd=None): """ Args: file_name: cwd: Returns: """ if cwd is not None: file_name = posixpath.join(cwd, file_name) write_FORCE_CONSTANTS( force_constants=self.phonopy.force_constants, filename=file_name )
[docs] def get_hesse_matrix(self): """ Returns: """ unit_conversion = ( scipy.constants.physical_constants["Hartree energy in eV"][0] / scipy.constants.physical_constants["Bohr radius"][0] ** 2 * scipy.constants.angstrom ** 2 ) force_shape = np.shape(self.phonopy.force_constants) force_reshape = force_shape[0] * force_shape[2] return ( np.transpose(self.phonopy.force_constants, (0, 2, 1, 3)).reshape( (force_reshape, force_reshape) ) / unit_conversion )
[docs] def get_thermal_properties(self, t_min=1, t_max=1500, t_step=50, temperatures=None): """ Args: t_min: t_max: t_step: temperatures: Returns: """ self.phonopy.run_thermal_properties( t_step=t_step, t_max=t_max, t_min=t_min, temperatures=temperatures ) tp_dict = self.phonopy.get_thermal_properties_dict() return thermal(tp_dict['temperatures'], tp_dict['free_energy'], tp_dict['entropy'], tp_dict['heat_capacity'])
@property def dos_total(self): """ Returns: """ return self["output/dos_total"] @property def dos_energies(self): """ Returns: """ return self["output/dos_energies"] @property def dynamical_matrix(self): """ Returns: """ return np.real_if_close( self.phonopy.get_dynamical_matrix().get_dynamical_matrix() )
[docs] def dynamical_matrix_at_q(self, q): """ Args: q: Returns: """ return np.real_if_close(self.phonopy.get_dynamical_matrix_at_q(q))
[docs] def plot_dos(self, ax=None, *args, **qwargs): """ Args: *args: ax: **qwargs: Returns: """ try: import pylab as plt except ImportError: import matplotlib.pyplot as plt if ax is None: fig, ax = plt.subplots(1, 1) ax.plot(self["output/dos_energies"], self["output/dos_total"], *args, **qwargs) ax.set_xlabel("Frequency [THz]") ax.set_ylabel("DOS") ax.set_title("Phonon DOS vs Energy") return ax