
pyiron Documentation
Release 0.2.17

Max-Planck-Institut für Eisenforschung GmbH - Computational Materials Design (CM) Department

Aug 24, 2020

CONTENTS

1 Explore pyiron 3

2 Join the development 5

3 News 7

4 Citing 9
4.1 About . 10
4.2 Installation . 12
4.3 Tutorials . 16
4.4 Team . 76
4.5 Collaborators . 78
4.6 Command Line Interface . 79
4.7 Citing . 80
4.8 FAQ . 82
4.9 Contributing to pyiron . 85

i

ii

pyiron Documentation, Release 0.2.17

pyiron - an integrated development environment (IDE) for computational materials science. It combines several tools
in a common platform:

• Atomic structure objects – compatible to the Atomic Simulation Environment (ASE).

• Atomistic simulation codes – like LAMMPS and VASP.

• Feedback Loops – to construct dynamic simulation life cycles.

• Hierarchical data management – interfacing with storage resources like SQL and HDF5.

• Integrated visualization – based on NGLview.

• Interactive simulation protocols - based on Jupyter notebooks.

• Object oriented job management – for scaling complex simulation protocols from single jobs to high-throughput
simulations.

pyiron (called pyron) is developed in the Computational Materials Design department of Joerg Neugebauer at the Max
Planck Institut für Eisenforschung (Max Planck Institute for iron research). While its original focus was to provide a
framework to develop and run complex simulation protocols as needed for ab initio thermodynamics it quickly evolved
into a versatile tool to manage a wide variety of simulation tasks. In 2016 the Interdisciplinary Centre for Advanced
Materials Simulation (ICAMS) joined the development of the framework with a specific focus on high throughput
applications. In 2018 pyiron was released as open-source project.

Note: pyiron 0.X – Disclaimer: With the first open source release of pyiron under the BSD license we provide a fully
functional core platform. We are currently working on finalizing various plugins, e.g. to enhance high throughput sim-
ulations, for Computational Phase Studies, and Electrochemistry and Corrosion. The code is published on Github.org,
PyPi.org and Anaconda.org

CONTENTS 1

https://travis-ci.org/pyiron/pyiron
https://wiki.fysik.dtu.dk/ase/
http://lammps.sandia.gov
https://www.vasp.at
https://support.hdfgroup.org/HDF5/
https://github.com/arose/nglview
http://jupyter.org
https://www.mpie.de/CM
https://www.mpie.de/person/43010/2763386
https://www.mpie.de/2281/en
https://www.mpie.de/2281/en
http://www.icams.de
http://www.icams.de
https://github.com/pyiron/pyiron/blob/master/LICENSE
https://www.mpie.de/2891195/computational_phase_studies
https://www.mpie.de/3119070/Corrosion
https://github.com/pyiron
https://pypi.org/user/pyiron/
https://anaconda.org/pyiron

pyiron Documentation, Release 0.2.17

2 CONTENTS

CHAPTER

ONE

EXPLORE PYIRON

We provide various options to install, explore and run pyiron:

• Workstation Installation (recommeded): for Windows, Linux or Mac OS X workstations (interface for local
VASP executable, support for the latest jupyterlab based GUI)

• Mybinder.org (beta): test pyiron directly in your browser (no VASP license, no visualization, only temporary
data storage)

• Docker (for demonstration): requires Docker installation (no VASP license, only temporary data storage)

3

pyiron Documentation, Release 0.2.17

4 Chapter 1. Explore pyiron

CHAPTER

TWO

JOIN THE DEVELOPMENT

Please contact us if you are interested in using pyiron:

• to interface your simulation code or method

• implementing high-throughput approaches based on atomistic codes

• to learn more about method development and Big Data in material science.

Please also check out the pyiron contributing guidelines

5

source/developers.html

pyiron Documentation, Release 0.2.17

6 Chapter 2. Join the development

CHAPTER

THREE

NEWS

• 22nd May 2020: pyiron 0.2.15 released. By now pyiron was downloaded over 20000 times on conda-forge and
gained attention with close to 100 stars on github.

• 8th May 2020: The tutorials of the 1st virtual pyiron workshop are now available online.

• 23rd March 2020: Cancellation of the 1st pyiron workshop due to COVID-19.

• 20th December 2019: Announcement of the 1st pyiron workshop in Bochum (Germany) from the 31st of
March to the 2nd of April 2020.

• 09th November 2019: pyiron was downloaded over 10000 times on conda-forge and gained attention with over
50 stars on github.

• 10th October 2019: pyiron 0.2.9 released.

• 20th June 2019: pyiron was downloaded over 5000 times on conda-forge and 70% of our code are covered with
unit tests.

• 10th May 2019: pyiron documentation hosted on readthedocs.org.

• 24th March 2019: pyiron 0.2.2 released.

• 15th March 2019: pyiron paper available as open access .

• 20th January 2019: pyiron 0.2.1 released.

• 15th December 2019: pyiron was downloaded over 2000 times on conda-forge .

• 21st November 2018: pyiron 0.2.0 released.

• 2nd August 2018: pyiron 0.1.8 released.

• 21st July 2018: pyiron paper accepted.

• 20th July 2018: pyiron 0.1.7 released.

• 25th May 2018: pyiron 0.1.5 released.

• 11th May 2018: pyiron 0.1.3 published on conda-forge install pyiron using: conda install -c
conda-forge pyiron

• 07th May 2018: pyiron paper submitted

• 05th April 2018: test pyiron on mybinder.org (beta)

• 27th March 2018: pyiron is available on anaconda.org install pyiron using: conda install -c pyiron
-c conda-forge pyiron

• 27th February 2018: pyiron is available on pypi.org install pyiron using: pip install pyiron

• 05th December 2017: The pyiron website goes online.

7

https://anaconda.org/conda-forge/pyiron/
https://github.com/pyiron/pyiron/stargazers/
https://pyiron.github.io/pyiron-virtual-workshop-2020/
http://potentials.rub.de
http://potentials.rub.de
https://anaconda.org/conda-forge/pyiron/
https://github.com/pyiron/pyiron/stargazers/
https://anaconda.org/conda-forge/pyiron/
https://coveralls.io/github/pyiron/pyiron?branch=master
https://coveralls.io/github/pyiron/pyiron?branch=master
https://pyiron.readthedocs.io
https://doi.org/10.1016/j.commatsci.2018.07.043
https://anaconda.org/conda-forge/pyiron/
https://anaconda.org/conda-forge/pyiron/
https://anaconda.org/pyiron/
https://pypi.org/user/pyiron/

pyiron Documentation, Release 0.2.17

8 Chapter 3. News

CHAPTER

FOUR

CITING

If you use pyiron in your research, please consider citing the following work:

@article{pyiron-paper,
title = {pyiron: An integrated development environment for computational materials

→˓science},
journal = {Computational Materials Science},
volume = {163},
pages = {24 - 36},
year = {2019},
issn = {0927-0256},
doi = {https://doi.org/10.1016/j.commatsci.2018.07.043},
url = {http://www.sciencedirect.com/science/article/pii/S0927025618304786},
author = {Jan Janssen and Sudarsan Surendralal and Yury Lysogorskiy and Mira

→˓Todorova and Tilmann Hickel and Ralf Drautz and Jörg Neugebauer},
keywords = {Modelling workflow, Integrated development environment, Complex

→˓simulation protocols},
}

Read more about citing individual modules/ plugins of pyiron and the implemented simulation codes.

9

source/citation.html

pyiron Documentation, Release 0.2.17

4.1 About

4.1.1 Introduction

pyiron is an integrated development environment for implementing, testing, and running simulations in computational
materials science. It combines several tools in a common platform:

• Atomic structure objects – compatible to the Atomic Simulation Environment (ASE).

• Atomistic simulation codes – like LAMMPS and VASP.

• Feedback Loops – to construct dynamic simulation life cycles.

• Hierarchical data management – interfacing with storage resources like SQL and HDF5.

• Integrated visualization – based on NGLview.

• Interactive simulation protocols - based on Jupyter notebooks.

• Object oriented job management – for scaling complex simulation protocols from single jobs to high-throughput
simulations.

pyiron (called pyron) is developed in the Computational Materials Design department of Joerg Neugebauer at the Max
Planck Institut für Eisenforschung (Max Planck Institute for iron research). While its original focus was to provide a
framework to develop and run complex simulation protocols as needed for ab initio thermodynamics it quickly evolved
into a versatile tool to manage a wide variety of simulation tasks. In 2016 the Interdisciplinary Centre for Advanced
Materials Simulation (ICAMS) joined the development of the framework with a specific focus on high throughput
applications. In 2018 pyiron was released as open-source project.

10 Chapter 4. Citing

https://wiki.fysik.dtu.dk/ase/
http://lammps.sandia.gov
https://www.vasp.at
https://support.hdfgroup.org/HDF5/
https://github.com/arose/nglview
http://jupyter.org
https://www.mpie.de/CM
https://www.mpie.de/person/43010/2763386
https://www.mpie.de/2281/en
https://www.mpie.de/2281/en
http://www.icams.de
http://www.icams.de

pyiron Documentation, Release 0.2.17

4.1.2 Getting Help

Technical issues and bugs should be reported on Github all other questions can be asked on stackoverflow using the
tag pyiron.

4.1.3 Release history

Release 0.2.0 (2018)

• Implement interactive interface to communicate with codes at runtime.

Release 0.1.0 (2018)

• opensource release - licensed under the BSD license.

• installation available on pip and anaconda.

• moved opensource repository to github.

Release 0.0.9 (2017)

• Name changed from PyIron to pyiron

• Fileoperations implemented (move, copy_to and remove).

• NGLview for visualisation.

• Atoms class speedup.

• Serial- and parallelmaster work with the cluster environment.

• Python 3.6 support added.

Release 0.0.8 (2016)

• Rewirte serial- and parallelmaster.

• Deprecated Qt environment in favor of jupyter.

• Python 3.5 support added.

• Use anaconda as recommended Python environment.

• Switch to Gitlab rather than subversion.

Release 0.0.5 (2015)

• Linux and Mac OS X support added.

• ASE compatible atom and atoms class.

4.1. About 11

https://github.com/pyiron
https://stackoverflow.com/questions/tagged/pyiron
https://stackoverflow.com/questions/tagged/pyiron

pyiron Documentation, Release 0.2.17

Release 0.0.1 (2011)

• initial version named PyCMW

4.2 Installation

Note: Before you install: We provide various levels of environments to test pyiron:

• Local Installation (recommeded): for Windows, Linux or Mac OS X workstation (interface for local VASP
executable, support for the latest jupyterlab based GUI)

• Mybinder.org (beta): test pyiron directly in your browser (no VASP license, only temporary data storage)

• Docker (for demonstration): requires docker installation (no VASP license, only temporary data storage)

4.2.1 Workstation Installation (recommeded)

Requirements

When you start to develop your own simulation protocols we recommend a local installation. Inside the pyiron
anaconda repository we provide precompiled executables for Linux, Mac OS X and Windows with Python 2.7, 3.5,
3.6 and 3.7 and the other packages are available inside the conda-forge channel.

Install pyiron package

As pyiron is written in Python you can install pyiron either via anaconda (recommended) or via pip.

Install via anaconda (recommended):

To install anaconda you can download the anaconda distribution. Following the installation update to the latest version
of conda from conda-forge.

conda update -c conda-forge conda

After the update of the anaconda environment you can install pyiron using:

conda install -c conda-forge pyiron

Install via pip:

pip is installed on Linux and Mac Os X by default and is included in most Python distributions. To install pyiron via
pip type:

pip install pyiron

While the anaconda installation already includes the lammps executable, the pip installation requires the user to include
a lammps executable named lmp_serial for Linux and Mac Os X or lmp_serial.exe for windows in their
PATH.

12 Chapter 4. Citing

https://anaconda.org/pyiron
https://anaconda.org/pyiron
https://conda-forge.org
https://www.anaconda.com
https://www.anaconda.com
https://www.anaconda.com/download/
https://conda-forge.org

pyiron Documentation, Release 0.2.17

Visualization

In addition to the pyiron package we recommend installing the NGLview visualization framework.

Stable version – for jupyter notebooks (recommended):

conda install -c conda-forge nglview
jupyter nbextension install nglview --py --sys-prefix
jupyter nbextension enable nglview --py --sys-prefix

Stable version – for jupyter lab

conda install -c conda-forge nodejs nglview
jupyter labextension install @jupyter-widgets/jupyterlab-manager --no-build
jupyter labextension install nglview-js-widgets

Simulation code: Lammps

pyiron supports the simulation codes VASP for DFT calculation and Lammps for molecular dynamics calculation.
While VASP requires a separate license and therefore has to be configured by the user, Lammps is available as open-
source code and can be installed from anaconda.

For Linux and Mac Os X (for Python 2.7, 3.5, 3.6 and 3.7):

conda install -c conda-forge lammps

For windows:

conda install -c pyiron lammps

Configuration

After the installation of pyiron we need to configure pyiron. The default configuration can be generated automatically.
In the terminal, start a new Python session and import pyiron:

> import pyiron
> pyiron.install()
>>> It appears that pyiron is not yet configured, do you want to create a default
→˓start configuration (recommended: yes). [yes/no]:
> yes
> exit()

The configuration does the following steps in the background:

• Create an ~/.pyiron config file – with the default settings (for simple installations)

• Create an ~/pyiron/projects directory – pyiron can only execute calculation within this project directory
to prevent any interference, with other tools or simulation management solutions.

4.2. Installation 13

https://github.com/arose/nglview
https://www.vasp.at
https://lammps.sandia.gov

pyiron Documentation, Release 0.2.17

• Create an ~/pyiron/resources directory – this directory includes the link to the executables and poten-
tials, sorted by code. The potentials for lammps are inside pyiron_lammps and those for vasp can be placed
in pyiron_vasp.

First calculation

After the successful configuration you can start your first pyiron calculation. Navigate to the the projects directory and
start a jupyter notebook or jupyter lab session correspondingly:

cd ~/pyiron/projects
jupyter notebook

or

cd ~/pyiron/projects
jupyter lab

Open a new jupyter notebook and inside the notebook you can now validate your pyiron calculation by creating a test
project, setting up an initial structure of bcc Fe and visualize it using NGLview.

from pyiron import Project
pr = Project('test')
basis = pr.create_structure('Fe', 'bcc', 2.78)
basis.plot3d()

Finally a first lammps calculation can be executed by:

ham = pr.create_job(pr.job_type.Lammps, 'lammpstestjob')
ham.structure = basis
ham.potential = ham.list_potentials()[0]
ham.run()

Next step

To get a better overview of all the available functionality inside pyiron we recommend the examples provided in the
examples section - Tutorials.

4.2.2 Computer Cluster (HPC)

While the local Installation is designed to scale beyond a single workstation, further multi user extensions are required
like:

• Jupyterhub for managing multiple Jupyter Sessions.

• PostgreSQL database for scalability.

• Queuing system for job management.

• Access Control lists for sharing files between users.

For further details please open a support request.

14 Chapter 4. Citing

https://github.com/jupyterhub/jupyterhub
https://www.postgresql.org

pyiron Documentation, Release 0.2.17

4.2.3 Mybinder.org (beta)

Warning: Mybinder.org is currently in beta stage, it should not take longer than a minute to load. We are sorry
for the inconvenience.

You can test pyiron on Mybinder.org (beta), without the need of a local installation. This installation comes with the
following limitations:

• No VASP license, DFT calculation can be imported and loaded but the execution is disabled.

• No visualization of atomistic structures using NGLview.

• Only temporary data storage, when you leave your session on Mybinder.org (beta) the environment is reset.

The Mybinder service is the most flexible way to test pyiron and get a first impression. Start pyiron on MyBinder.org
to test your first pyiron examples.

4.2.4 Docker (for demonstration)

Commonly it is easier to install pyiron directly using anaconda following the Local Installation (Workstation) instead
of installing Docker. If you already setup Docker on your system, you might still be interested in downloading the
pyiron container. While Mybinder.org (beta) is based on a similar Docker image, running the Docker image locally
enables more flexibility. In particular the graphical user interface is fully supported in this version. Still the following
limitations remain:

• No VASP license, DFT calculation can be imported and loaded but the execution is disabled.

• Only temporary data storage, when you shutdown your Docker instance the environment is reset.

This installation of pyiron is most suitable for presentations. After the local installation of Docker there are two
versions to choose from stable version based on jupyter notebooks and the latest beta version based on jupyter lab. For
both versions the first command downloads the image from Dockerhub and the second command executes it locally.

Docker image with jupyter notebook (stable)

docker pull pyiron/pyiron:latest

docker run -i -t -p 8888:8888 pyiron/pyiron /bin/bash -c "source /srv/conda/envs/
→˓notebook/bin/activate; jupyter notebook --notebook-dir=/home/pyiron/ --ip='*' --
→˓port=8888"

Docker image with jupyter lab (beta)

docker pull pyiron/pyiron:latest

docker run -i -t -p 8888:8888 pyiron/pyiron /bin/bash -c "source /srv/conda/envs/
→˓notebook/bin/activate; jupyter lab --notebook-dir=/home/pyiron/ --ip='*' --port=8888
→˓"

4.2. Installation 15

https://mybinder.org/v2/gh/pyiron/pyiron/master?urlpath=lab
https://www.vasp.at
https://github.com/arose/nglview
https://mybinder.org/v2/gh/pyiron/pyiron/master?urlpath=lab
https://mybinder.org
https://mybinder.org/v2/gh/pyiron/pyiron/master?urlpath=lab
https://mybinder.org/v2/gh/pyiron/pyiron/master?urlpath=lab
https://mybinder.org/v2/gh/pyiron/examples.git/master?urlpath=lab
https://www.docker.com
https://www.vasp.at
https://www.docker.com
https://www.docker.com
http://jupyter.org
https://github.com/jupyterlab/jupyterlab
https://hub.docker.com/r/pyiron/pyiron/

pyiron Documentation, Release 0.2.17

Connect

After the run command the following line is displayed: Copy/paste this URL into your browser when you connect for
the first time, to login with a token:

http://localhost:8888/?token=<your_token>

Open the link with your personal jupyter token <your_token> in the browser of your choice. Just like the Binder
image also the Docker image comes with the examples preinstalled.

4.3 Tutorials

4.3.1 First steps through pyiron

This section gives a brief introduction about fundamental concepts of pyiron and how they can be used to setup, run
and analyze atomic simulations. As a first step we import the libraries numpy for data analysis and matplotlib for
visualization.

[1]: import numpy as np
%matplotlib inline
import matplotlib.pylab as plt

To import pyiron simply use:

[2]: from pyiron.project import Project

The Project object introduced below is central in pyiron. It allows to name the project as well as to derive all other
objects such as structures, jobs etc. without having to import them. Thus, by code completion Tab the respective
commands can be found easily.

We now create a pyiron Project named ‘first_steps’.

[3]: pr = Project(path='first_steps')

The project name also applies for the directory that is created for the project.

Perform a LAMMPS MD simulation

Having created an instance of the pyiron Project we now perform a LAMMPS molecular dynamics simulation.

For this basic simulation example we construct an fcc Al crystal in a cubic supercell (cubic=True). For more details
on generating structures, please have a look at our structures example

[4]: basis = pr.create_ase_bulk('Al', cubic=True)
supercell_3x3x3 = basis.repeat([3, 3, 3])
supercell_3x3x3.plot3d()

NGLWidget()

Here create_ase_bulk uses the ASE bulk module. The structure can be modified - here we extend the original
cell to a 3x3x3 supercell (repeat([3, 3, 3]). Finally, we plot the structure using NGlview.

The project object allows to create various simulation job types. Here, we create a LAMMPS job.

16 Chapter 4. Citing

http://www.numpy.org/
https://matplotlib.org/
http://lammps.sandia.gov/
https://wiki.fysik.dtu.dk/ase/ase/build/build.html
http://nglviewer.org/nglview/latest/api.html

pyiron Documentation, Release 0.2.17

[5]: job = pr.create_job(job_type=pr.job_type.Lammps, job_name='Al_T800K')

Further, we specify a Molecular Dynamics simulation at 𝑇 = 800 K using the supercell structure created above.

[6]: job.structure = supercell_3x3x3
job.calc_md(temperature=800, pressure=0, n_ionic_steps=10000)

To see all available interatomic potentials which are compatible with the structure (for our example they must contain
Al) and the job type (here LAMMPS) we call job.list_potentials().

[7]: job.list_potentials()

[7]: ['Al_Mg_Mendelev_eam', 'Zope_Ti_Al_2003_eam', 'Al_H_Ni_Angelo_eam']

From the above let us select the first potential in the list.

[8]: pot = job.list_potentials()[0]
print ('Selected potential: ', pot)
job.potential = pot

Selected potential: Al_Mg_Mendelev_eam

To run the LAMMPS simulation (locally) we now simply use:

[9]: job.run()

Analyze the calculation

After the simulation has finished the information about the job can be accessed through the Project object.

[10]: job = pr['Al_T800K']
job

[10]: {'groups': ['input', 'output'], 'nodes': ['NAME', 'server', 'VERSION', 'TYPE']}

Printing the job object (note that in Jupyter we don’t have to call a print statement if the variable/object is in the last
line). The output lists the variables (nodes) and the directories (groups). To get a list of all variables stored in the
generic output we type:

[11]: job['output/generic']

[11]: {'groups': [], 'nodes': ['temperatures', 'positions', 'steps', 'forces', 'energy_pot',
→˓ 'energy_tot', 'volume', 'cells', 'pressures', 'unwrapped_positions', 'time']}

An animated 3d plot of the MD trajectories is created by:

[12]: job.animate_structure()

NGLWidget(count=101)

To analyze the temperature evolution we plot it as function of the MD step.

[13]: temperatures = job['output/generic/temperature']
steps = job['output/generic/steps']
plt.plot(steps, temperatures)
plt.xlabel('MD step')
plt.ylabel('Temperature [K]');

4.3. Tutorials 17

pyiron Documentation, Release 0.2.17

In the same way we can plot the trajectories.

[14]: pos = job['output/generic/positions']
x, y, z = [pos[:, :, i] for i in range(3)]
sel = np.abs(z) < 0.1
fig, axs = plt.subplots(1,1)
axs.scatter(x[sel], y[sel])
axs.set_xlabel('x [\AA]')
axs.set_ylabel('y [\AA]')
axs.set_aspect('equal', 'box');

18 Chapter 4. Citing

pyiron Documentation, Release 0.2.17

Perform a series of jobs

To run the MD simulation for various temperatures we can simply loop over the desired temperature values.

[15]: for temperature in np.arange(200, 1200, 200):
job = pr.create_job(pr.job_type.Lammps,

'Al_T{}K'.format(int(temperature)))
job.structure = supercell_3x3x3
job.potential = pot
job.calc_md(temperature=temperature,

pressure=0,
n_ionic_steps=10000)

job.run()

To inspect the list of jobs in our current project we type (note that the existing job from the previous excercise at
𝑇 = 800 K has been recognized and not run again):

[16]: pr

[16]: ['Al_T600K', 'Al_T800K', 'Al_T1000K', 'Al_T200K', 'Al_T400K']

We can now iterate over the jobs and extract volume and mean temperature.

[17]: vol_lst, temp_lst = [], []
for job in pr.iter_jobs(convert_to_object=False):

volumes = job['output/generic/volume']
temperatures = job['output/generic/temperature']
temp_lst.append(np.mean(temperatures[:-20]))
vol_lst.append(np.mean(volumes[:-20]))

Then we can use the extracted information to plot the thermal expansion, calculated within the 𝑁𝑃𝑇 ensemble. For
plotting the temperature values in ascending order the volume list is mapped to the sorted temperature list.

[18]: plt.figure()
vol_lst[:] = [vol_lst[np.argsort(temp_lst)[k]]

for k in range(len(vol_lst))]
plt.plot(sorted(temp_lst), vol_lst,

linestyle='-',marker='o',)
plt.title('Thermal expansion')
plt.xlabel('Temperature [K]')
plt.ylabel('Volume [\AA^3]');

4.3. Tutorials 19

pyiron Documentation, Release 0.2.17

Create a series of projects

We extend the previous example and compute the thermal expansion for three of the available aluminum potentials.
First, let us create a new pyiron project named ‘Al_potentials’. We can use the information of the previously run job
‘Al_T200K’ of the ‘first_steps’ project to find all the compatible potentials.

[19]: pr = Project('Al_potentials')
pot_lst = pr['../first_steps/Al_T200K'].load_object().list_potentials()[:3]

[]:

[20]: pot_lst

[20]: ['Al_Mg_Mendelev_eam', 'Zope_Ti_Al_2003_eam', 'Al_H_Ni_Angelo_eam']

Note again that list_potentials() automatically only returns the potentials that are compatible with the struc-
ture (chemical species) and the job type.

We can now loop over the selected potentials and run the MD simulation for the desired temperature values for any of
the potentials.

[21]: for pot in pot_lst:
print ('Interatomic potential used: ',pot)
pr_pot = pr.create_group(pot)
for temperature in np.arange(200, 1200, 200):

job = pr_pot.create_job(pr.job_type.Lammps,
'Al_T{}K'.format(int(temperature)))

job.structure = supercell_3x3x3
job.potential = pot
job.calc_md(temperature=temperature,

pressure=0,
n_ionic_steps=10000)

job.run()

20 Chapter 4. Citing

pyiron Documentation, Release 0.2.17

Interatomic potential used: Al_Mg_Mendelev_eam
Interatomic potential used: Zope_Ti_Al_2003_eam
Interatomic potential used: Al_H_Ni_Angelo_eam

With the pr.create_group() command a new subproject (directory) is created named here by the name of the
potential.

For any particular potential the thermal expansion data can be obtained again by looping over the jobs performed
using that potential. To obtain the thermal expansion curves for all the potentials used we can simply iterate over the
subprojects (directories) created above by using the pr.iter_groups() command.

[22]: for p in pr.iter_groups():
vol_lst, temp_lst = [], []
for out in p.iter_jobs(path='output/generic'):

volumes = out['volume']
temperatures = out['temperature']
temp_lst.append(np.mean(temperatures[:-20]))
vol_lst.append(np.mean(volumes[:-20]))

Plot only if there is a job in that group
if len(p.get_job_ids()) > 0:

plt.plot(temp_lst, vol_lst,
linestyle='-',marker='o',
label=p.name)

plt.legend(loc='best')
plt.title('Thermal expansion for different interatomic potentials')
plt.xlabel('Temperature [K]')
plt.ylabel('Volume [\AA^3]');

[]:

4.3. Tutorials 21

pyiron Documentation, Release 0.2.17

4.3.2 Energy volume curve

Theory

Fitting the energy volume curve allows to calculate the equilibrium energy 𝐸0, the equilirbium volume 𝑉0, the equi-
librium bulk modulus 𝐵0 and its derivative 𝐵

′

0. These quantities can then be used as part of the Einstein model to get
an initial prediction for the thermodynamik properties, the heat capacity 𝐶𝑣 and the free energy 𝐹 .

Initialisation

We start by importing matplotlib, numpy and the pyiron project class.

[1]: %matplotlib inline
import matplotlib.pyplot as plt
import numpy as np
from pyiron import Project

In the next step we create a project, by specifying the name of the project. In addition we remove all jobs which might
exist in the project before to have a clean project for our example.

[2]: pr = Project(path='thermo')
pr.remove_jobs(recursive=True)

Atomistic structure

To analyse the energy volume dependence a single super cell is sufficient, so we create an iron super cell as an example.

[3]: basis = pr.create_structure(element='Fe', bravais_basis='bcc', lattice_constant=2.75)
basis.plot3d()

_ColormakerRegistry()

NGLWidget()

Calculation

Energy volume curves are commonly calculated with ab initio codes, so we use VASP in this example. But we focus
on the generic commands so the same example works with any DFT code. We choose ‘vasp’ as job name prefix, select
an energy cut off of 320𝑒𝑉 and assign the basis to the job. Afterwards we apply the corresponding strain.

[4]: for strain in np.linspace(0.97, 1.03, 7):
strain_str = str(strain).replace('.', '_')
job_vasp_strain = pr.create_job(job_type=pr.job_type.GpawJob, job_name='gpaw_' +

→˓strain_str)
job_vasp_strain.set_encut(320.0)
job_vasp_strain.structure = basis.copy()
job_vasp_strain.structure.set_cell(cell=basis.cell * strain ** (1/3), scale_

→˓atoms=True)
job_vasp_strain.run()

As these are simple calculation, there is no need to submit them to the queuing sytem. We can confirm the status of
the calculation with the job_table. If the status of each job is marked as finished, then we can continue with the next
step.

22 Chapter 4. Citing

pyiron Documentation, Release 0.2.17

[5]: pr.job_table()

[5]: id status chemicalformula job subjob projectpath \
6 3601535 finished None gpaw_0_97 /gpaw_0_97 /cmmc/u/
38 3601804 finished None gpaw_0_98 /gpaw_0_98 /cmmc/u/
45 3602090 finished None gpaw_0_99 /gpaw_0_99 /cmmc/u/
8 3602359 finished None gpaw_1_0 /gpaw_1_0 /cmmc/u/
39 3602595 finished None gpaw_1_01 /gpaw_1_01 /cmmc/u/
0 3602869 finished None gpaw_1_02 /gpaw_1_02 /cmmc/u/
4 3603146 finished None gpaw_1_03 /gpaw_1_03 /cmmc/u/
37 3603487 finished None gpaw_0_97 /gpaw_0_97 /cmmc/u/
5 3603765 finished None gpaw_0_98 /gpaw_0_98 /cmmc/u/
44 3604021 finished None gpaw_0_99 /gpaw_0_99 /cmmc/u/
2 3604219 finished None gpaw_1_0 /gpaw_1_0 /cmmc/u/
7 3604443 finished None gpaw_1_01 /gpaw_1_01 /cmmc/u/
3 3604655 finished None gpaw_1_02 /gpaw_1_02 /cmmc/u/
1 3604768 finished None gpaw_1_03 /gpaw_1_03 /cmmc/u/
40 3604824 finished None gpaw_0_97 /gpaw_0_97 /cmmc/u/
42 3604871 finished None gpaw_0_98 /gpaw_0_98 /cmmc/u/
43 3604875 finished None gpaw_0_99 /gpaw_0_99 /cmmc/u/
48 3604880 finished None gpaw_1_0 /gpaw_1_0 /cmmc/u/
9 3604884 finished None gpaw_1_01 /gpaw_1_01 /cmmc/u/
10 3604887 finished None gpaw_1_02 /gpaw_1_02 /cmmc/u/
19 3604890 finished None gpaw_1_03 /gpaw_1_03 /cmmc/u/
41 3604896 finished None gpaw_0_97 /gpaw_0_97 /cmmc/u/
46 3604899 finished None gpaw_0_98 /gpaw_0_98 /cmmc/u/
47 3604903 finished None gpaw_0_99 /gpaw_0_99 /cmmc/u/
11 3604907 finished None gpaw_1_0 /gpaw_1_0 /cmmc/u/
12 3604910 finished None gpaw_1_01 /gpaw_1_01 /cmmc/u/
13 3604911 finished None gpaw_1_02 /gpaw_1_02 /cmmc/u/
14 3604913 finished None gpaw_1_03 /gpaw_1_03 /cmmc/u/
15 3604914 finished None gpaw_0_97 /gpaw_0_97 /cmmc/u/
16 3604915 finished None gpaw_0_98 /gpaw_0_98 /cmmc/u/
17 3604916 finished None gpaw_0_99 /gpaw_0_99 /cmmc/u/
18 3604917 finished None gpaw_1_0 /gpaw_1_0 /cmmc/u/
20 3604918 finished None gpaw_1_01 /gpaw_1_01 /cmmc/u/
21 3604919 finished None gpaw_1_02 /gpaw_1_02 /cmmc/u/
22 3604920 finished None gpaw_1_03 /gpaw_1_03 /cmmc/u/
23 3604921 finished None gpaw_0_97 /gpaw_0_97 /cmmc/u/
24 3604922 finished None gpaw_0_98 /gpaw_0_98 /cmmc/u/
25 3604923 finished None gpaw_0_99 /gpaw_0_99 /cmmc/u/
26 3604924 finished None gpaw_1_0 /gpaw_1_0 /cmmc/u/
27 3604925 finished None gpaw_1_01 /gpaw_1_01 /cmmc/u/
28 3604926 finished None gpaw_1_02 /gpaw_1_02 /cmmc/u/
29 3604927 finished None gpaw_1_03 /gpaw_1_03 /cmmc/u/
30 3604928 finished None gpaw_0_97 /gpaw_0_97 /cmmc/u/
31 3604929 finished None gpaw_0_98 /gpaw_0_98 /cmmc/u/
32 3604930 finished None gpaw_0_99 /gpaw_0_99 /cmmc/u/
33 3604931 finished None gpaw_1_0 /gpaw_1_0 /cmmc/u/
34 3604933 finished None gpaw_1_01 /gpaw_1_01 /cmmc/u/
35 3604934 finished None gpaw_1_02 /gpaw_1_02 /cmmc/u/
36 3604935 finished None gpaw_1_03 /gpaw_1_03 /cmmc/u/

project \
6 janj/pyiron/projects/2019/2019-09-04-website-examples/thermo/
38 janj/pyiron/projects/2019/2019-09-04-website-examples/thermo/
45 janj/pyiron/projects/2019/2019-09-04-website-examples/thermo/
8 janj/pyiron/projects/2019/2019-09-04-website-examples/thermo/

(continues on next page)

4.3. Tutorials 23

pyiron Documentation, Release 0.2.17

(continued from previous page)

39 janj/pyiron/projects/2019/2019-09-04-website-examples/thermo/
0 janj/pyiron/projects/2019/2019-09-04-website-examples/thermo/
4 janj/pyiron/projects/2019/2019-09-04-website-examples/thermo/
37 janj/pyiron/projects/2019/2019-09-04-website-examples/thermo/encut_270/
5 janj/pyiron/projects/2019/2019-09-04-website-examples/thermo/encut_270/
44 janj/pyiron/projects/2019/2019-09-04-website-examples/thermo/encut_270/
2 janj/pyiron/projects/2019/2019-09-04-website-examples/thermo/encut_270/
7 janj/pyiron/projects/2019/2019-09-04-website-examples/thermo/encut_270/
3 janj/pyiron/projects/2019/2019-09-04-website-examples/thermo/encut_270/
1 janj/pyiron/projects/2019/2019-09-04-website-examples/thermo/encut_270/
40 janj/pyiron/projects/2019/2019-09-04-website-examples/thermo/encut_280/
42 janj/pyiron/projects/2019/2019-09-04-website-examples/thermo/encut_280/
43 janj/pyiron/projects/2019/2019-09-04-website-examples/thermo/encut_280/
48 janj/pyiron/projects/2019/2019-09-04-website-examples/thermo/encut_280/
9 janj/pyiron/projects/2019/2019-09-04-website-examples/thermo/encut_280/
10 janj/pyiron/projects/2019/2019-09-04-website-examples/thermo/encut_280/
19 janj/pyiron/projects/2019/2019-09-04-website-examples/thermo/encut_280/
41 janj/pyiron/projects/2019/2019-09-04-website-examples/thermo/encut_290/
46 janj/pyiron/projects/2019/2019-09-04-website-examples/thermo/encut_290/
47 janj/pyiron/projects/2019/2019-09-04-website-examples/thermo/encut_290/
11 janj/pyiron/projects/2019/2019-09-04-website-examples/thermo/encut_290/
12 janj/pyiron/projects/2019/2019-09-04-website-examples/thermo/encut_290/
13 janj/pyiron/projects/2019/2019-09-04-website-examples/thermo/encut_290/
14 janj/pyiron/projects/2019/2019-09-04-website-examples/thermo/encut_290/
15 janj/pyiron/projects/2019/2019-09-04-website-examples/thermo/encut_300/
16 janj/pyiron/projects/2019/2019-09-04-website-examples/thermo/encut_300/
17 janj/pyiron/projects/2019/2019-09-04-website-examples/thermo/encut_300/
18 janj/pyiron/projects/2019/2019-09-04-website-examples/thermo/encut_300/
20 janj/pyiron/projects/2019/2019-09-04-website-examples/thermo/encut_300/
21 janj/pyiron/projects/2019/2019-09-04-website-examples/thermo/encut_300/
22 janj/pyiron/projects/2019/2019-09-04-website-examples/thermo/encut_300/
23 janj/pyiron/projects/2019/2019-09-04-website-examples/thermo/encut_310/
24 janj/pyiron/projects/2019/2019-09-04-website-examples/thermo/encut_310/
25 janj/pyiron/projects/2019/2019-09-04-website-examples/thermo/encut_310/
26 janj/pyiron/projects/2019/2019-09-04-website-examples/thermo/encut_310/
27 janj/pyiron/projects/2019/2019-09-04-website-examples/thermo/encut_310/
28 janj/pyiron/projects/2019/2019-09-04-website-examples/thermo/encut_310/
29 janj/pyiron/projects/2019/2019-09-04-website-examples/thermo/encut_310/
30 janj/pyiron/projects/2019/2019-09-04-website-examples/thermo/encut_320/
31 janj/pyiron/projects/2019/2019-09-04-website-examples/thermo/encut_320/
32 janj/pyiron/projects/2019/2019-09-04-website-examples/thermo/encut_320/
33 janj/pyiron/projects/2019/2019-09-04-website-examples/thermo/encut_320/
34 janj/pyiron/projects/2019/2019-09-04-website-examples/thermo/encut_320/
35 janj/pyiron/projects/2019/2019-09-04-website-examples/thermo/encut_320/
36 janj/pyiron/projects/2019/2019-09-04-website-examples/thermo/encut_320/

timestart timestop totalcputime computer hamilton \
6 2019-09-04 13:50:31.285688 None None janj@cmmc001#1 GpawJob
38 2019-09-04 13:50:42.970024 None None janj@cmmc001#1 GpawJob
45 2019-09-04 13:50:52.350144 None None janj@cmmc001#1 GpawJob
8 2019-09-04 13:51:01.413156 None None janj@cmmc001#1 GpawJob
39 2019-09-04 13:51:10.251511 None None janj@cmmc001#1 GpawJob
0 2019-09-04 13:51:20.041600 None None janj@cmmc001#1 GpawJob
4 2019-09-04 13:51:29.741836 None None janj@cmmc001#1 GpawJob
37 2019-09-04 13:51:42.796905 None None janj@cmmc001#1 GpawJob
5 2019-09-04 13:51:53.088836 None None janj@cmmc001#1 GpawJob
44 2019-09-04 13:52:02.979283 None None janj@cmmc001#1 GpawJob

(continues on next page)

24 Chapter 4. Citing

pyiron Documentation, Release 0.2.17

(continued from previous page)

2 2019-09-04 13:52:11.921097 None None janj@cmmc001#1 GpawJob
7 2019-09-04 13:52:21.335934 None None janj@cmmc001#1 GpawJob
3 2019-09-04 13:52:31.009130 None None janj@cmmc001#1 GpawJob
1 2019-09-04 13:52:40.320534 None None janj@cmmc001#1 GpawJob
40 2019-09-04 13:52:50.470563 None None janj@cmmc001#1 GpawJob
42 2019-09-04 13:52:59.954797 None None janj@cmmc001#1 GpawJob
43 2019-09-04 13:53:09.963464 None None janj@cmmc001#1 GpawJob
48 2019-09-04 13:53:20.141701 None None janj@cmmc001#1 GpawJob
9 2019-09-04 13:53:29.324131 None None janj@cmmc001#1 GpawJob
10 2019-09-04 13:53:38.550641 None None janj@cmmc001#1 GpawJob
19 2019-09-04 13:53:48.099532 None None janj@cmmc001#1 GpawJob
41 2019-09-04 13:53:59.152323 None None janj@cmmc001#1 GpawJob
46 2019-09-04 13:54:08.057464 None None janj@cmmc001#1 GpawJob
47 2019-09-04 13:54:17.516512 None None janj@cmmc001#1 GpawJob
11 2019-09-04 13:54:26.874849 None None janj@cmmc001#1 GpawJob
12 2019-09-04 13:54:37.345194 None None janj@cmmc001#1 GpawJob
13 2019-09-04 13:54:48.785761 None None janj@cmmc001#1 GpawJob
14 2019-09-04 13:55:00.556380 None None janj@cmmc001#1 GpawJob
15 2019-09-04 13:55:10.828970 None None janj@cmmc001#1 GpawJob
16 2019-09-04 13:55:19.451476 None None janj@cmmc001#1 GpawJob
17 2019-09-04 13:55:28.235999 None None janj@cmmc001#1 GpawJob
18 2019-09-04 13:55:36.912405 None None janj@cmmc001#1 GpawJob
20 2019-09-04 13:55:46.777440 None None janj@cmmc001#1 GpawJob
21 2019-09-04 13:55:55.186420 None None janj@cmmc001#1 GpawJob
22 2019-09-04 13:56:05.185718 None None janj@cmmc001#1 GpawJob
23 2019-09-04 13:56:14.138209 None None janj@cmmc001#1 GpawJob
24 2019-09-04 13:56:22.072544 None None janj@cmmc001#1 GpawJob
25 2019-09-04 13:56:30.773140 None None janj@cmmc001#1 GpawJob
26 2019-09-04 13:56:38.738514 None None janj@cmmc001#1 GpawJob
27 2019-09-04 13:56:46.853680 None None janj@cmmc001#1 GpawJob
28 2019-09-04 13:56:55.404483 None None janj@cmmc001#1 GpawJob
29 2019-09-04 13:57:03.940368 None None janj@cmmc001#1 GpawJob
30 2019-09-04 13:57:13.347542 None None janj@cmmc001#1 GpawJob
31 2019-09-04 13:57:21.459612 None None janj@cmmc001#1 GpawJob
32 2019-09-04 13:57:29.623085 None None janj@cmmc001#1 GpawJob
33 2019-09-04 13:57:37.903535 None None janj@cmmc001#1 GpawJob
34 2019-09-04 13:57:46.032614 None None janj@cmmc001#1 GpawJob
35 2019-09-04 13:57:54.280901 None None janj@cmmc001#1 GpawJob
36 2019-09-04 13:58:02.411374 None None janj@cmmc001#1 GpawJob

hamversion parentid masterid
6 None None None
38 None None None
45 None None None
8 None None None
39 None None None
0 None None None
4 None None None
37 None None None
5 None None None
44 None None None
2 None None None
7 None None None
3 None None None
1 None None None
40 None None None
42 None None None

(continues on next page)

4.3. Tutorials 25

pyiron Documentation, Release 0.2.17

(continued from previous page)

43 None None None
48 None None None
9 None None None
10 None None None
19 None None None
41 None None None
46 None None None
47 None None None
11 None None None
12 None None None
13 None None None
14 None None None
15 None None None
16 None None None
17 None None None
18 None None None
20 None None None
21 None None None
22 None None None
23 None None None
24 None None None
25 None None None
26 None None None
27 None None None
28 None None None
29 None None None
30 None None None
31 None None None
32 None None None
33 None None None
34 None None None
35 None None None
36 None None None

Analysis

We aggregate the data for further processing in two separated lists, one for the volumes and one for the energies. To
do so we iterate over the jobs within the project, filter the job names which contain the string ‘vasp’ and from those
extract the final volume and the final energy.

[6]: volume_lst, energy_lst = zip(*[[job['output/generic/volume'][-1], job['output/generic/
→˓energy_pot'][-1]]

for job in pr.iter_jobs(convert_to_object=False) if
→˓'gpaw' in job.job_name])

We plot the aggregated data using matplotlib.

[7]: plt.plot(volume_lst, energy_lst, 'x-')
plt.xlabel('Volume ($\AA ^ 3$)')
plt.ylabel('Energy (eV)')

[7]: Text(0, 0.5, 'Energy (eV)')

26 Chapter 4. Citing

pyiron Documentation, Release 0.2.17

Encut Dependence

To extend the complexity of our simulation protocol we can not only iterate over different strains but also different
energy cutoffs. For this we use multiple sub projects to structure the data. And we summarize the previous code in
multiple functions to maintain a high level of readability. The first function calculates a specific strained configuration
for an specifc energy cut off, while the second function analyses the different strained calculations for a specific energy
cutoff and returns the list of energy volume pairs.

Functions

[8]: def vasp_calculation_for_strain(pr, basis, strain, encut):
strain_str = str(strain).replace('.', '_')
job_vasp_strain = pr.create_job(job_type=pr.job_type.GpawJob, job_name='gpaw_' +

→˓strain_str)
job_vasp_strain.set_encut(encut)
job_vasp_strain.structure = basis.copy()
job_vasp_strain.structure.set_cell(cell=basis.cell * strain ** (1/3), scale_

→˓atoms=True)
job_vasp_strain.run()

[9]: def energy_volume_pairs(pr):
volume_lst, energy_lst = zip(*[[job['output/generic/volume'][-1], job['output/

→˓generic/energy_pot'][-1]]
for job in pr.iter_jobs(convert_to_object=False) if

→˓'gpaw' in job.job_name])
return volume_lst, energy_lst

4.3. Tutorials 27

pyiron Documentation, Release 0.2.17

Calculation

With these functions we can structure our code and implement the additional for loop to include multiple energy
cutoffs.

[10]: for encut in np.linspace(270, 320, 6):
encut_str = 'encut_' + str(int(encut))
pr_encut = pr.open(encut_str)
for strain in np.linspace(0.97, 1.03, 7):

vasp_calculation_for_strain(pr=pr_encut,
basis=basis,
strain=strain,
encut=encut)

Analysis

The analysis is structured in a similar way. Here we use iter_groups() to iterate over the existing subprojects within
our project and plot the individual energy volume curves using the functions defined above.

[11]: for pr_encut in pr.iter_groups():
volume_lst, energy_lst = energy_volume_pairs(pr_encut)
plt.plot(volume_lst, energy_lst, 'x-', label=pr_encut.base_name)

plt.xlabel('Volume ($\AA ^ 3$)')
plt.ylabel('Energy (eV)')
plt.legend()

[11]: <matplotlib.legend.Legend at 0x2b8836c94470>

28 Chapter 4. Citing

pyiron Documentation, Release 0.2.17

Fitting

After we created multiple datasets we can now start to fit the converged results. While it is possible to fit the results
using a simple polynomial fit we prefer to use the phyiscally motivated birch murnaghan equation or the vinet equation.
For this we create the Murnaghan object and use it is fitting functionality:

[12]: murn = pr.create_job(job_type=pr.job_type.Murnaghan, job_name='murn')

Birch Marnaghan

[13]: [e0, b0, bP, v0], [e0_error, b0_error, bP_error, v0_error] = murn._fit_leastsq(volume_
→˓lst=volume_lst,

energy_
→˓lst=energy_lst,

→˓fittype='birchmurnaghan')
[e0, b0, bP, v0]

[13]: [-10938046483227.81, -160.21766207685127, 4.0, -21876092966476.383]

Vinet

[14]: [e0, b0, bP, v0], [e0_error, b0_error, bP_error, v0_error] = murn._fit_leastsq(volume_
→˓lst=volume_lst,

energy_
→˓lst=energy_lst,

→˓fittype='vinet')
[e0, b0, bP, v0]

[14]: [-16.62393775939236,
361.18208413366904,
-8.873197550150648,
21.173041264923626]

We see that both equation of states give slightly different results, with overall good agreement. To validate the agree-
ment we plot the with with the original data.

[15]: vol_lst = np.linspace(np.min(volume_lst), np.max(volume_lst), 1000)
plt.plot(volume_lst, energy_lst, label='dft')
plt.plot(vol_lst, murn.fit_module.vinet_energy(vol_lst, e0, b0/ 160.21766208, bP, v0),
→˓ label='vinet')
plt.xlabel('Volume ($\AA ^ 3$)')
plt.ylabel('Energy (eV)')
plt.legend()

[15]: <matplotlib.legend.Legend at 0x2b8836cf24a8>

4.3. Tutorials 29

pyiron Documentation, Release 0.2.17

Murnaghan Module

Besides the fitting capabilities the Murnaghan module can also be used to run a set of calculations. For this we define a
reference job, which can be either a Vasp calculation or any other pyiron job type and then specify the input parameters
for the Murnaghan job.

[16]: job_vasp_strain = pr.create_job(job_type=pr.job_type.GpawJob, job_name='gpaw')
job_vasp_strain.set_encut(320)
job_vasp_strain.structure = basis.copy()

[17]: murn = pr.create_job(job_type=pr.job_type.Murnaghan, job_name='murn')
murn.ref_job = job_vasp_strain
murn.input

[17]: Parameter Value \
0 num_points 11
1 fit_type polynomial
2 fit_order 3
3 vol_range 0.1

Comment
0 number of sample points
1 ['polynomial', 'birch', 'birchmurnaghan', 'murnaghan', 'pouriertarantola', 'vinet']
2 order of the fit polynom
3 relative volume variation around volume defined by ref_ham

We modify the input parameters to agree with the settings used in the examples above and execute the simulation by
calling the run command on the murnaghan job object.

[18]: murn.input['num_points'] = 7
murn.input['vol_range'] = 0.03

[19]: type(murn.structure)

[19]: ase.atoms.Atoms

30 Chapter 4. Citing

pyiron Documentation, Release 0.2.17

[20]: pr.job_table()

[20]: id status chemicalformula job subjob projectpath \
6 3601535 finished None gpaw_0_97 /gpaw_0_97 /cmmc/u/
38 3601804 finished None gpaw_0_98 /gpaw_0_98 /cmmc/u/
45 3602090 finished None gpaw_0_99 /gpaw_0_99 /cmmc/u/
8 3602359 finished None gpaw_1_0 /gpaw_1_0 /cmmc/u/
39 3602595 finished None gpaw_1_01 /gpaw_1_01 /cmmc/u/
0 3602869 finished None gpaw_1_02 /gpaw_1_02 /cmmc/u/
4 3603146 finished None gpaw_1_03 /gpaw_1_03 /cmmc/u/
37 3603487 finished None gpaw_0_97 /gpaw_0_97 /cmmc/u/
5 3603765 finished None gpaw_0_98 /gpaw_0_98 /cmmc/u/
44 3604021 finished None gpaw_0_99 /gpaw_0_99 /cmmc/u/
2 3604219 finished None gpaw_1_0 /gpaw_1_0 /cmmc/u/
7 3604443 finished None gpaw_1_01 /gpaw_1_01 /cmmc/u/
3 3604655 finished None gpaw_1_02 /gpaw_1_02 /cmmc/u/
1 3604768 finished None gpaw_1_03 /gpaw_1_03 /cmmc/u/
40 3604824 finished None gpaw_0_97 /gpaw_0_97 /cmmc/u/
42 3604871 finished None gpaw_0_98 /gpaw_0_98 /cmmc/u/
43 3604875 finished None gpaw_0_99 /gpaw_0_99 /cmmc/u/
48 3604880 finished None gpaw_1_0 /gpaw_1_0 /cmmc/u/
9 3604884 finished None gpaw_1_01 /gpaw_1_01 /cmmc/u/
10 3604887 finished None gpaw_1_02 /gpaw_1_02 /cmmc/u/
19 3604890 finished None gpaw_1_03 /gpaw_1_03 /cmmc/u/
41 3604896 finished None gpaw_0_97 /gpaw_0_97 /cmmc/u/
46 3604899 finished None gpaw_0_98 /gpaw_0_98 /cmmc/u/
47 3604903 finished None gpaw_0_99 /gpaw_0_99 /cmmc/u/
11 3604907 finished None gpaw_1_0 /gpaw_1_0 /cmmc/u/
12 3604910 finished None gpaw_1_01 /gpaw_1_01 /cmmc/u/
13 3604911 finished None gpaw_1_02 /gpaw_1_02 /cmmc/u/
14 3604913 finished None gpaw_1_03 /gpaw_1_03 /cmmc/u/
15 3604914 finished None gpaw_0_97 /gpaw_0_97 /cmmc/u/
16 3604915 finished None gpaw_0_98 /gpaw_0_98 /cmmc/u/
17 3604916 finished None gpaw_0_99 /gpaw_0_99 /cmmc/u/
18 3604917 finished None gpaw_1_0 /gpaw_1_0 /cmmc/u/
20 3604918 finished None gpaw_1_01 /gpaw_1_01 /cmmc/u/
21 3604919 finished None gpaw_1_02 /gpaw_1_02 /cmmc/u/
22 3604920 finished None gpaw_1_03 /gpaw_1_03 /cmmc/u/
23 3604921 finished None gpaw_0_97 /gpaw_0_97 /cmmc/u/
24 3604922 finished None gpaw_0_98 /gpaw_0_98 /cmmc/u/
25 3604923 finished None gpaw_0_99 /gpaw_0_99 /cmmc/u/
26 3604924 finished None gpaw_1_0 /gpaw_1_0 /cmmc/u/
27 3604925 finished None gpaw_1_01 /gpaw_1_01 /cmmc/u/
28 3604926 finished None gpaw_1_02 /gpaw_1_02 /cmmc/u/
29 3604927 finished None gpaw_1_03 /gpaw_1_03 /cmmc/u/
30 3604928 finished None gpaw_0_97 /gpaw_0_97 /cmmc/u/
31 3604929 finished None gpaw_0_98 /gpaw_0_98 /cmmc/u/
32 3604930 finished None gpaw_0_99 /gpaw_0_99 /cmmc/u/
33 3604931 finished None gpaw_1_0 /gpaw_1_0 /cmmc/u/
34 3604933 finished None gpaw_1_01 /gpaw_1_01 /cmmc/u/
35 3604934 finished None gpaw_1_02 /gpaw_1_02 /cmmc/u/
36 3604935 finished None gpaw_1_03 /gpaw_1_03 /cmmc/u/

project \
6 janj/pyiron/projects/2019/2019-09-04-website-examples/thermo/
38 janj/pyiron/projects/2019/2019-09-04-website-examples/thermo/
45 janj/pyiron/projects/2019/2019-09-04-website-examples/thermo/
8 janj/pyiron/projects/2019/2019-09-04-website-examples/thermo/

(continues on next page)

4.3. Tutorials 31

pyiron Documentation, Release 0.2.17

(continued from previous page)

39 janj/pyiron/projects/2019/2019-09-04-website-examples/thermo/
0 janj/pyiron/projects/2019/2019-09-04-website-examples/thermo/
4 janj/pyiron/projects/2019/2019-09-04-website-examples/thermo/
37 janj/pyiron/projects/2019/2019-09-04-website-examples/thermo/encut_270/
5 janj/pyiron/projects/2019/2019-09-04-website-examples/thermo/encut_270/
44 janj/pyiron/projects/2019/2019-09-04-website-examples/thermo/encut_270/
2 janj/pyiron/projects/2019/2019-09-04-website-examples/thermo/encut_270/
7 janj/pyiron/projects/2019/2019-09-04-website-examples/thermo/encut_270/
3 janj/pyiron/projects/2019/2019-09-04-website-examples/thermo/encut_270/
1 janj/pyiron/projects/2019/2019-09-04-website-examples/thermo/encut_270/
40 janj/pyiron/projects/2019/2019-09-04-website-examples/thermo/encut_280/
42 janj/pyiron/projects/2019/2019-09-04-website-examples/thermo/encut_280/
43 janj/pyiron/projects/2019/2019-09-04-website-examples/thermo/encut_280/
48 janj/pyiron/projects/2019/2019-09-04-website-examples/thermo/encut_280/
9 janj/pyiron/projects/2019/2019-09-04-website-examples/thermo/encut_280/
10 janj/pyiron/projects/2019/2019-09-04-website-examples/thermo/encut_280/
19 janj/pyiron/projects/2019/2019-09-04-website-examples/thermo/encut_280/
41 janj/pyiron/projects/2019/2019-09-04-website-examples/thermo/encut_290/
46 janj/pyiron/projects/2019/2019-09-04-website-examples/thermo/encut_290/
47 janj/pyiron/projects/2019/2019-09-04-website-examples/thermo/encut_290/
11 janj/pyiron/projects/2019/2019-09-04-website-examples/thermo/encut_290/
12 janj/pyiron/projects/2019/2019-09-04-website-examples/thermo/encut_290/
13 janj/pyiron/projects/2019/2019-09-04-website-examples/thermo/encut_290/
14 janj/pyiron/projects/2019/2019-09-04-website-examples/thermo/encut_290/
15 janj/pyiron/projects/2019/2019-09-04-website-examples/thermo/encut_300/
16 janj/pyiron/projects/2019/2019-09-04-website-examples/thermo/encut_300/
17 janj/pyiron/projects/2019/2019-09-04-website-examples/thermo/encut_300/
18 janj/pyiron/projects/2019/2019-09-04-website-examples/thermo/encut_300/
20 janj/pyiron/projects/2019/2019-09-04-website-examples/thermo/encut_300/
21 janj/pyiron/projects/2019/2019-09-04-website-examples/thermo/encut_300/
22 janj/pyiron/projects/2019/2019-09-04-website-examples/thermo/encut_300/
23 janj/pyiron/projects/2019/2019-09-04-website-examples/thermo/encut_310/
24 janj/pyiron/projects/2019/2019-09-04-website-examples/thermo/encut_310/
25 janj/pyiron/projects/2019/2019-09-04-website-examples/thermo/encut_310/
26 janj/pyiron/projects/2019/2019-09-04-website-examples/thermo/encut_310/
27 janj/pyiron/projects/2019/2019-09-04-website-examples/thermo/encut_310/
28 janj/pyiron/projects/2019/2019-09-04-website-examples/thermo/encut_310/
29 janj/pyiron/projects/2019/2019-09-04-website-examples/thermo/encut_310/
30 janj/pyiron/projects/2019/2019-09-04-website-examples/thermo/encut_320/
31 janj/pyiron/projects/2019/2019-09-04-website-examples/thermo/encut_320/
32 janj/pyiron/projects/2019/2019-09-04-website-examples/thermo/encut_320/
33 janj/pyiron/projects/2019/2019-09-04-website-examples/thermo/encut_320/
34 janj/pyiron/projects/2019/2019-09-04-website-examples/thermo/encut_320/
35 janj/pyiron/projects/2019/2019-09-04-website-examples/thermo/encut_320/
36 janj/pyiron/projects/2019/2019-09-04-website-examples/thermo/encut_320/

timestart timestop totalcputime computer hamilton \
6 2019-09-04 13:50:31.285688 None None janj@cmmc001#1 GpawJob
38 2019-09-04 13:50:42.970024 None None janj@cmmc001#1 GpawJob
45 2019-09-04 13:50:52.350144 None None janj@cmmc001#1 GpawJob
8 2019-09-04 13:51:01.413156 None None janj@cmmc001#1 GpawJob
39 2019-09-04 13:51:10.251511 None None janj@cmmc001#1 GpawJob
0 2019-09-04 13:51:20.041600 None None janj@cmmc001#1 GpawJob
4 2019-09-04 13:51:29.741836 None None janj@cmmc001#1 GpawJob
37 2019-09-04 13:51:42.796905 None None janj@cmmc001#1 GpawJob
5 2019-09-04 13:51:53.088836 None None janj@cmmc001#1 GpawJob
44 2019-09-04 13:52:02.979283 None None janj@cmmc001#1 GpawJob

(continues on next page)

32 Chapter 4. Citing

pyiron Documentation, Release 0.2.17

(continued from previous page)

2 2019-09-04 13:52:11.921097 None None janj@cmmc001#1 GpawJob
7 2019-09-04 13:52:21.335934 None None janj@cmmc001#1 GpawJob
3 2019-09-04 13:52:31.009130 None None janj@cmmc001#1 GpawJob
1 2019-09-04 13:52:40.320534 None None janj@cmmc001#1 GpawJob
40 2019-09-04 13:52:50.470563 None None janj@cmmc001#1 GpawJob
42 2019-09-04 13:52:59.954797 None None janj@cmmc001#1 GpawJob
43 2019-09-04 13:53:09.963464 None None janj@cmmc001#1 GpawJob
48 2019-09-04 13:53:20.141701 None None janj@cmmc001#1 GpawJob
9 2019-09-04 13:53:29.324131 None None janj@cmmc001#1 GpawJob
10 2019-09-04 13:53:38.550641 None None janj@cmmc001#1 GpawJob
19 2019-09-04 13:53:48.099532 None None janj@cmmc001#1 GpawJob
41 2019-09-04 13:53:59.152323 None None janj@cmmc001#1 GpawJob
46 2019-09-04 13:54:08.057464 None None janj@cmmc001#1 GpawJob
47 2019-09-04 13:54:17.516512 None None janj@cmmc001#1 GpawJob
11 2019-09-04 13:54:26.874849 None None janj@cmmc001#1 GpawJob
12 2019-09-04 13:54:37.345194 None None janj@cmmc001#1 GpawJob
13 2019-09-04 13:54:48.785761 None None janj@cmmc001#1 GpawJob
14 2019-09-04 13:55:00.556380 None None janj@cmmc001#1 GpawJob
15 2019-09-04 13:55:10.828970 None None janj@cmmc001#1 GpawJob
16 2019-09-04 13:55:19.451476 None None janj@cmmc001#1 GpawJob
17 2019-09-04 13:55:28.235999 None None janj@cmmc001#1 GpawJob
18 2019-09-04 13:55:36.912405 None None janj@cmmc001#1 GpawJob
20 2019-09-04 13:55:46.777440 None None janj@cmmc001#1 GpawJob
21 2019-09-04 13:55:55.186420 None None janj@cmmc001#1 GpawJob
22 2019-09-04 13:56:05.185718 None None janj@cmmc001#1 GpawJob
23 2019-09-04 13:56:14.138209 None None janj@cmmc001#1 GpawJob
24 2019-09-04 13:56:22.072544 None None janj@cmmc001#1 GpawJob
25 2019-09-04 13:56:30.773140 None None janj@cmmc001#1 GpawJob
26 2019-09-04 13:56:38.738514 None None janj@cmmc001#1 GpawJob
27 2019-09-04 13:56:46.853680 None None janj@cmmc001#1 GpawJob
28 2019-09-04 13:56:55.404483 None None janj@cmmc001#1 GpawJob
29 2019-09-04 13:57:03.940368 None None janj@cmmc001#1 GpawJob
30 2019-09-04 13:57:13.347542 None None janj@cmmc001#1 GpawJob
31 2019-09-04 13:57:21.459612 None None janj@cmmc001#1 GpawJob
32 2019-09-04 13:57:29.623085 None None janj@cmmc001#1 GpawJob
33 2019-09-04 13:57:37.903535 None None janj@cmmc001#1 GpawJob
34 2019-09-04 13:57:46.032614 None None janj@cmmc001#1 GpawJob
35 2019-09-04 13:57:54.280901 None None janj@cmmc001#1 GpawJob
36 2019-09-04 13:58:02.411374 None None janj@cmmc001#1 GpawJob

hamversion parentid masterid
6 None None None
38 None None None
45 None None None
8 None None None
39 None None None
0 None None None
4 None None None
37 None None None
5 None None None
44 None None None
2 None None None
7 None None None
3 None None None
1 None None None
40 None None None
42 None None None

(continues on next page)

4.3. Tutorials 33

pyiron Documentation, Release 0.2.17

(continued from previous page)

43 None None None
48 None None None
9 None None None
10 None None None
19 None None None
41 None None None
46 None None None
47 None None None
11 None None None
12 None None None
13 None None None
14 None None None
15 None None None
16 None None None
17 None None None
18 None None None
20 None None None
21 None None None
22 None None None
23 None None None
24 None None None
25 None None None
26 None None None
27 None None None
28 None None None
29 None None None
30 None None None
31 None None None
32 None None None
33 None None None
34 None None None
35 None None None
36 None None None

[21]: murn.run()

The job murn was saved and received the ID: 3606074
The job strain_0_97 was saved and received the ID: 3606075
The job strain_0_98 was saved and received the ID: 3606084
The job strain_0_99 was saved and received the ID: 3606089
The job strain_1_0 was saved and received the ID: 3606092
The job strain_1_01 was saved and received the ID: 3606099
The job strain_1_02 was saved and received the ID: 3606106
The job strain_1_03 was saved and received the ID: 3606112
job_id: 3606075 finished
job_id: 3606084 finished
job_id: 3606089 finished
job_id: 3606092 finished
job_id: 3606099 finished
job_id: 3606106 finished
job_id: 3606112 finished

Afterwards we can use the build in capabilites to plot the resulting energy volume curve and fit different equations of
state to the calculated energy volume pairs.

[22]: murn.output_to_pandas()

34 Chapter 4. Citing

pyiron Documentation, Release 0.2.17

[22]: volume energy error id equilibrium_b_prime \
0 20.172969 -16.576797 0.0 3606075 -8.102283
1 20.380937 -16.593942 0.0 3606084 -8.102283
2 20.588906 -16.607049 0.0 3606089 -8.102283
3 20.796875 -16.616336 0.0 3606092 -8.102283
4 21.004844 -16.622714 0.0 3606099 -8.102283
5 21.212813 -16.623909 0.0 3606106 -8.102283
6 21.420781 -16.620513 0.0 3606112 -8.102283

equilibrium_bulk_modulus equilibrium_energy equilibrium_volume
0 359.180621 -16.623924 21.172823
1 359.180621 -16.623924 21.172823
2 359.180621 -16.623924 21.172823
3 359.180621 -16.623924 21.172823
4 359.180621 -16.623924 21.172823
5 359.180621 -16.623924 21.172823
6 359.180621 -16.623924 21.172823

[23]: murn.plot()

[24]: murn.fit_vinet()

[24]: {'fit_type': 'vinet',
'volume_eq': 21.173041264923626,
'energy_eq': -16.62393775939236,
'bulkmodul_eq': 361.18208413366904,
'b_prime_eq': -8.873197550150648,
'least_square_error': array([2.35206844e-04, 2.03161020e+01, 3.15362473e+00, 7.
→˓39621643e-03])}

4.3. Tutorials 35

pyiron Documentation, Release 0.2.17

Common mistakes

Not copying the basis

It is important to copy the basis before applying the strain, as the strain has to be applied on the initial structure, not
the previous structure:

[25]: volume_lst_with_copy = []
for strain in np.linspace(0.97, 1.03, 7):

basis_copy = basis.copy()
basis_copy.set_cell(cell=basis.cell * strain ** (1/3), scale_atoms=True)
volume_lst_with_copy.append(basis_copy.get_volume())

[26]: basis_copy = basis.copy()
volume_lst_without_copy = []
for strain in np.linspace(0.97, 1.03, 7):

basis_copy.set_cell(cell=basis_copy.cell * strain ** (1/3), scale_atoms=True)
volume_lst_without_copy.append(basis_copy.get_volume())

[27]: volume_lst_with_copy, volume_lst_without_copy

[27]: ([20.17296874999999,
20.380937499999995,
20.588906250000004,
20.796874999999996,
21.004843749999992,
21.212812500000016,
21.42078124999999],

[20.17296874999999,
19.769509374999995,
19.571814281250003,
19.571814281250003,
19.76753242406251,
20.162883072543767,
20.767769564720073])

Rescaling the cell

Another common issue is the rescaling of the supercell, there are multiple options to choose from. We used the option
to scale the atoms with the supercell.

[28]: basis_copy = basis.copy()
strain = 0.5
basis_copy.set_cell(cell=basis_copy.cell * strain ** (1/3), scale_atoms=True)
basis_copy.plot3d()

NGLWidget()

A nother typical case is rescaling the cell to increase the distance between the atoms or add vacuum. But that is not
what we want to fit an energy volume curve.

[29]: basis_copy = basis.copy()
strain = 0.5
basis_copy.set_cell(cell=basis_copy.cell * strain ** (1/3), scale_atoms=False)
basis_copy.plot3d()

36 Chapter 4. Citing

pyiron Documentation, Release 0.2.17

NGLWidget()

The same can be achieved by setting the basis to relative coordinates.

[30]: basis_copy = basis.copy()
strain = 0.5
basis_copy.set_relative()
basis_copy.cell *= strain ** (1/3)
basis_copy.plot3d()

NGLWidget()

[31]: basis_copy = basis.copy()
strain = 0.5
basis_copy.cell *= strain ** (1/3)
basis_copy.plot3d()

NGLWidget()

[]:

4.3.3 Creating structures in pyiron

This section gives a brief introduction about some of the tools available in pyiron to construct atomic structures.

For the sake of compatibility, our structure class is written to be compatible with the popular Atomistic Simulation
Environment package (ASE). This makes it possible to use routines from ASE to help set-up structures.

Furthermore, pyiron uses the NGLview package to visualize the structures and trajectories interactively in 3D using
NGLview-widgets.

As preparation for the following discussion we import a few python libraries

[1]: import numpy as np
%matplotlib inline
import matplotlib.pylab as plt

and create a pyiron project named ‘structures’:

[2]: from pyiron.project import Project
pr = Project(path='structures')

Bulk crystals

In this section we discuss various possibilities to create bulk crystal structures.

4.3. Tutorials 37

https://wiki.fysik.dtu.dk/ase/
http://nglviewer.org/nglview/latest/api.html

pyiron Documentation, Release 0.2.17

Using create_structure()

The simplest way to generate simple crystal structures is using the inbuilt create_structure() function speci-
fying the element symbol, Bravais basis and the lattice constant(s)

Note: The output gives a cubic cell rather than the smallest non-orthogonal unit cell.

[3]: structure = pr.create_structure('Al',
bravais_basis='fcc',
lattice_constant=4.05)

To plot the structure interactively in 3D simply use:

[4]: structure.plot3d()

_ColormakerRegistry()

NGLWidget()

Using create_ase_bulk()

Another convenient way to set up structures is using the create_ase_bulk() function which is built on top of the
ASE build package for bulk crystals. This function returns an object which is of the pyiron structure object type.

Example: fcc bulk aluminum in a cubic cell

[5]: structure = pr.create_ase_bulk('Al', cubic=True)
structure.plot3d()

NGLWidget()

Example: wurtzite GaN in a 3x3x3 repeated orthorhombic cell.

Note: - In contrast to new_structure = structure.repeat() which creates a new object, set_repeat() modifies the existing
structure object. - Setting spacefill=False in the plot3d() method changes the atomic structure style to “ball
and stick”.

[6]: structure = pr.create_ase_bulk('AlN',
crystalstructure='wurtzite',
a=3.5, orthorhombic=True)

structure.set_repeat([3,3,3])
structure.plot3d(spacefill=False)

NGLWidget()

Creating surfaces (using ASE)

Surfaces can be created using the create_surface() function which is also built on top of the ASE build package
for surfaces

Example: Creating a 3x4 fcc Al(111) surface with 4 layers and a vacuum of 10 Ångström

[7]: Al_111 = pr.create_surface("Al", surface_type="fcc111",
size=(3, 4, 4), vacuum=10, orthogonal=True)

Al_111.plot3d()

NGLWidget()

38 Chapter 4. Citing

https://wiki.fysik.dtu.dk/ase/ase/build/build.html#ase.build.bulk
https://wiki.fysik.dtu.dk/ase/_modules/ase/build/surface.html

pyiron Documentation, Release 0.2.17

Creating structures without importing the project class

In all the examples shown above, the structures are create from the pyiron Project object. It is also possible to do
this without importing/initializing this object. For this the appropriate imports must be made.

[8]: from pyiron import create_ase_bulk, create_surface

[9]: structure = create_ase_bulk('AlN',
crystalstructure='wurtzite',
a=3.5, orthorhombic=True)

structure.set_repeat([3,3,3])
structure.plot3d(spacefill=False)

NGLWidget()

[10]: Al_111 = create_surface("Al", surface_type="fcc111",
size=(3, 4, 4), vacuum=10, orthogonal=True)

Al_111.plot3d()

NGLWidget()

Using the ASE spacegroup class

[11]: from ase.spacegroup import crystal
from pyiron import ase_to_pyiron

a = 9.04
skutterudite = crystal(('Co', 'Sb'),

basis=[(0.25, 0.25, 0.25), (0.0, 0.335, 0.158)],
spacegroup=204,
cellpar=[a, a, a, 90, 90, 90])

skutterudite = ase_to_pyiron(skutterudite)

[12]: skutterudite.plot3d()

NGLWidget()

Accessing the properties of the structure object

Using the bulk aluminum fcc example from before the structure object can be created by

[13]: structure = pr.create_ase_bulk('Al', cubic=True)

A summary of the information about the structure is given by using

[14]: print(structure)

Al: [0. 0. 0.]
Al: [0. 2.025 2.025]
Al: [2.025 0. 2.025]
Al: [2.025 2.025 0.]
pbc: [True True True]
cell:
[[4.05 0. 0.]

(continues on next page)

4.3. Tutorials 39

pyiron Documentation, Release 0.2.17

(continued from previous page)

[0. 4.05 0.]
[0. 0. 4.05]]

The cell vectors of the structure object can be accessed and edited through

[15]: structure.cell

[15]: array([[4.05, 0. , 0.],
[0. , 4.05, 0.],
[0. , 0. , 4.05]])

The positions of the atoms in the structure object can be accessed and edited through

[16]: structure.positions

[16]: array([[0. , 0. , 0.],
[0. , 2.025, 2.025],
[2.025, 0. , 2.025],
[2.025, 2.025, 0.]])

Point defects

Creating a single vacancy

We start by setting up a 4x4x4 supercell

[17]: structure = pr.create_ase_bulk('Al', cubic=True)
structure.set_repeat([4,4,4])

To create the vacancy at position index “0” simply use:

[18]: del structure[0]

To plot the structure that now contains a vacancy run:

[19]: structure.plot3d()

NGLWidget()

Creating multiple vacancies

[20]: # First create a 4x4x4 supercell
structure = pr.create_ase_bulk('Al', cubic=True)
structure.set_repeat([4,4,4])
print('Number of atoms in the repeat unit: ',structure.get_number_of_atoms())

Number of atoms in the repeat unit: 256

The del command works for passing a list of indices to the structure object. For example, a random set of nvac
vacancies can be created by using

40 Chapter 4. Citing

pyiron Documentation, Release 0.2.17

[21]: # Generate a list of indices for the vacancies
n_vac = 24
vac_ind_lst = np.random.permutation(len(structure))[:n_vac]

Remove atoms according to the "vac_ind_lst"
del structure[vac_ind_lst]

[22]: # Visualize the structure
print('Number of atoms in the repeat unit: ',structure.get_number_of_atoms())
structure.plot3d()

Number of atoms in the repeat unit: 232

NGLWidget()

Random substitutial alloys

[23]: # Create a 4x4x4 supercell
structure = pr.create_ase_bulk('Al', cubic=True)
structure.set_repeat([4,4,4])

Substitutional atoms can be defined by changing the atomic species accessed through its position index.

Here, we set 𝑛sub magnesium substitutional atoms at random positions

[24]: n_sub = 24
structure[np.random.permutation(len(structure))[:n_sub]] = 'Mg'

[25]: # Visualize the structure and print some additional information about the structure
print('Number of atoms in the repeat unit: ',structure.get_number_of_atoms())
print('Chemical formula: ',structure.get_chemical_formula())
structure.plot3d()

Number of atoms in the repeat unit: 256
Chemical formula: Al232Mg24

NGLWidget()

Explicit definition of the structure

You can also set-up structures through the explicit input of the cell parameters and positions

[26]: cell = 10.0 * np.eye(3) # Specifying the cell dimensions
positions = [[0.25, 0.25, 0.25], [0.75, 0.75, 0.75]]
elements = ['O', 'O']

Now use the Atoms class to create the instance.
O_dimer = pr.create_atoms(elements=elements, scaled_positions=positions, cell=cell)

O_dimer.plot3d()

NGLWidget()

4.3. Tutorials 41

pyiron Documentation, Release 0.2.17

Importing from cif/other file formats

Parsers from ASE can be used to import structures from other formats. In this example, we will download and import
a Nepheline structure from the Crystallography Open Database (COD)

[27]: # The COD structures can be accessed through their unique COD identifier
filename = '1008753.cif'
url = 'http://www.crystallography.net/cod/{}'.format(filename)

[28]: # Download and save the structure file locally
import urllib
urllib.request.urlretrieve(url=url, filename='strucs.'+filename);

[29]: # Using ase parsers to read the structure and then convert to a pyiron instance
import ase
from pyiron import ase_to_pyiron

structure = ase_to_pyiron(ase.io.read(filename='strucs.'+filename,
format='cif'))

/home/surendralal/miniconda3/envs/pyiron_workshop/lib/python3.7/site-packages/ase/io/
→˓cif.py:375: UserWarning: crystal system 'hexagonal' is not interpreted for space
→˓group Spacegroup(173, setting=1). This may result in wrong setting!
setting_name, spacegroup))

[30]: structure.plot3d()

NGLWidget()

[]:

4.3.4 Data mining using pyiron tables

In this example, the data mining capabilities of pyiron using the PyironTables class is demonstrated by computing
and contrasting the ground state properties of fcc-Al using various force fields.

[1]: from pyiron import Project
import numpy as np

[2]: pr = Project("potential_scan")

Uncomment the next line if you want to remove all jobs and start again
pr.remove_jobs(recursive=True)

Creating a dummy job to get list of potentials

In order to get the list of available LAMMPS potentials, a dummy job with an Al bulk structure is created

[3]: dummy_job = pr.create_job(pr.job_type.Lammps, "dummy_job")
dummy_job.structure = pr.create_ase_bulk("Al")
Chosing only select potentials to run (you can play with these valuess)
num_potentials = 5
potential_list = dummy_job.list_potentials()[:num_potentials]

42 Chapter 4. Citing

http://www.crystallography.net/cod/index.php

pyiron Documentation, Release 0.2.17

Creating a Murnaghan job for each potential in their respective subprojects

A separate Murnaghan job (to compute equilibrium lattice constant and the bulk modulus) is created and run for every
potential

[4]: for pot in potential_list:
pot_str = pot.replace("-", "_")
open a subproject within a project
with pr.open(pot_str) as pr_sub:

no need for unique job name if in different subprojects
job_name = "murn_Al"
Use the subproject to create the jobs
murn = pr_sub.create_job(pr.job_type.Murnaghan, job_name)
job_ref = pr_sub.create_job(pr.job_type.Lammps, "Al_ref")
job_ref.structure = pr.create_ase_bulk("Al", cubic=True)
job_ref.potential = pot
job_ref.calc_minimize()
murn.ref_job = job_ref
Some potentials may not work with certain LAMMPS compilations.
Therefore, we need to have a little exception handling
try:

murn.run()
except RuntimeError:

pass

The job murn_Al was saved and received the ID: 1
The job strain_0_9 was saved and received the ID: 2
The job strain_0_92 was saved and received the ID: 3
The job strain_0_94 was saved and received the ID: 4
The job strain_0_96 was saved and received the ID: 5
The job strain_0_98 was saved and received the ID: 6
The job strain_1_0 was saved and received the ID: 7
The job strain_1_02 was saved and received the ID: 8
The job strain_1_04 was saved and received the ID: 9
The job strain_1_06 was saved and received the ID: 10
The job strain_1_08 was saved and received the ID: 11
The job strain_1_1 was saved and received the ID: 12
job_id: 2 finished
job_id: 3 finished
job_id: 4 finished
job_id: 5 finished
job_id: 6 finished
job_id: 7 finished
job_id: 8 finished
job_id: 9 finished
job_id: 10 finished
job_id: 11 finished
job_id: 12 finished
The job murn_Al was saved and received the ID: 13
The job strain_0_9 was saved and received the ID: 14
The job strain_0_92 was saved and received the ID: 15
The job strain_0_94 was saved and received the ID: 16
The job strain_0_96 was saved and received the ID: 17
The job strain_0_98 was saved and received the ID: 18
The job strain_1_0 was saved and received the ID: 19
The job strain_1_02 was saved and received the ID: 20
The job strain_1_04 was saved and received the ID: 21
The job strain_1_06 was saved and received the ID: 22

(continues on next page)

4.3. Tutorials 43

pyiron Documentation, Release 0.2.17

(continued from previous page)

The job strain_1_08 was saved and received the ID: 23
The job strain_1_1 was saved and received the ID: 24
job_id: 14 finished
job_id: 15 finished
job_id: 16 finished
job_id: 17 finished
job_id: 18 finished
job_id: 19 finished
job_id: 20 finished
job_id: 21 finished
job_id: 22 finished
job_id: 23 finished
job_id: 24 finished
The job murn_Al was saved and received the ID: 25
The job strain_0_9 was saved and received the ID: 26
The job strain_0_92 was saved and received the ID: 27
The job strain_0_94 was saved and received the ID: 28
The job strain_0_96 was saved and received the ID: 29
The job strain_0_98 was saved and received the ID: 30
The job strain_1_0 was saved and received the ID: 31
The job strain_1_02 was saved and received the ID: 32
The job strain_1_04 was saved and received the ID: 33
The job strain_1_06 was saved and received the ID: 34
The job strain_1_08 was saved and received the ID: 35
The job strain_1_1 was saved and received the ID: 36
job_id: 26 finished
job_id: 27 finished
job_id: 28 finished
job_id: 29 finished
job_id: 30 finished
job_id: 31 finished
job_id: 32 finished
job_id: 33 finished
job_id: 34 finished
job_id: 35 finished
job_id: 36 finished
The job murn_Al was saved and received the ID: 37
The job strain_0_9 was saved and received the ID: 38

2020-05-01 14:22:19,979 - pyiron_log - WARNING - Job aborted
2020-05-01 14:22:19,982 - pyiron_log - WARNING - LAMMPS (3 Mar 2020)
Reading data file ...

orthogonal box = (0 0 0) to (3.91023 3.91023 3.91023)
1 by 1 by 1 MPI processor grid
reading atoms ...
4 atoms
read_data CPU = 0.00191307 secs

ERROR: MEAM library error 3 (src/USER-MEAMC/pair_meamc.cpp:596)
Last command: pair_coeff * * MgAlZn.library.meam Mg Al MgAlZn.parameter.meam Mg Al Zn

The job murn_Al was saved and received the ID: 39
The job strain_0_9 was saved and received the ID: 40
The job strain_0_92 was saved and received the ID: 41
The job strain_0_94 was saved and received the ID: 42
The job strain_0_96 was saved and received the ID: 43
The job strain_0_98 was saved and received the ID: 44
The job strain_1_0 was saved and received the ID: 45

(continues on next page)

44 Chapter 4. Citing

pyiron Documentation, Release 0.2.17

(continued from previous page)

The job strain_1_02 was saved and received the ID: 46
The job strain_1_04 was saved and received the ID: 47
The job strain_1_06 was saved and received the ID: 48
The job strain_1_08 was saved and received the ID: 49
The job strain_1_1 was saved and received the ID: 50
job_id: 40 finished
job_id: 41 finished
job_id: 42 finished
job_id: 43 finished
job_id: 44 finished
job_id: 45 finished
job_id: 46 finished
job_id: 47 finished
job_id: 48 finished
job_id: 49 finished
job_id: 50 finished

If you inspect the job table, you would find that each Murnaghan job generates various small LAMMPS jobs (see
column hamilton). Some of these jobs might have failed with status aborted.

[5]: pr.job_table()

[5]: id status chemicalformula job subjob \
0 1 finished Al4 murn_Al /murn_Al
1 2 finished Al4 strain_0_9 /strain_0_9
2 3 finished Al4 strain_0_92 /strain_0_92
3 4 finished Al4 strain_0_94 /strain_0_94
4 5 finished Al4 strain_0_96 /strain_0_96
5 6 finished Al4 strain_0_98 /strain_0_98
6 7 finished Al4 strain_1_0 /strain_1_0
7 8 finished Al4 strain_1_02 /strain_1_02
8 9 finished Al4 strain_1_04 /strain_1_04
9 10 finished Al4 strain_1_06 /strain_1_06
10 11 finished Al4 strain_1_08 /strain_1_08
11 12 finished Al4 strain_1_1 /strain_1_1
12 13 finished Al4 murn_Al /murn_Al
13 14 finished Al4 strain_0_9 /strain_0_9
14 15 finished Al4 strain_0_92 /strain_0_92
15 16 finished Al4 strain_0_94 /strain_0_94
16 17 finished Al4 strain_0_96 /strain_0_96
17 18 finished Al4 strain_0_98 /strain_0_98
18 19 finished Al4 strain_1_0 /strain_1_0
19 20 finished Al4 strain_1_02 /strain_1_02
20 21 finished Al4 strain_1_04 /strain_1_04
21 22 finished Al4 strain_1_06 /strain_1_06
22 23 finished Al4 strain_1_08 /strain_1_08
23 24 finished Al4 strain_1_1 /strain_1_1
24 25 finished Al4 murn_Al /murn_Al
25 26 finished Al4 strain_0_9 /strain_0_9
26 27 finished Al4 strain_0_92 /strain_0_92
27 28 finished Al4 strain_0_94 /strain_0_94
28 29 finished Al4 strain_0_96 /strain_0_96
29 30 finished Al4 strain_0_98 /strain_0_98
30 31 finished Al4 strain_1_0 /strain_1_0
31 32 finished Al4 strain_1_02 /strain_1_02
32 33 finished Al4 strain_1_04 /strain_1_04
33 34 finished Al4 strain_1_06 /strain_1_06

(continues on next page)

4.3. Tutorials 45

pyiron Documentation, Release 0.2.17

(continued from previous page)

34 35 finished Al4 strain_1_08 /strain_1_08
35 36 finished Al4 strain_1_1 /strain_1_1
36 37 aborted Al4 murn_Al /murn_Al
37 38 aborted Al4 strain_0_9 /strain_0_9
38 39 finished Al4 murn_Al /murn_Al
39 40 finished Al4 strain_0_9 /strain_0_9
40 41 finished Al4 strain_0_92 /strain_0_92
41 42 finished Al4 strain_0_94 /strain_0_94
42 43 finished Al4 strain_0_96 /strain_0_96
43 44 finished Al4 strain_0_98 /strain_0_98
44 45 finished Al4 strain_1_0 /strain_1_0
45 46 finished Al4 strain_1_02 /strain_1_02
46 47 finished Al4 strain_1_04 /strain_1_04
47 48 finished Al4 strain_1_06 /strain_1_06
48 49 finished Al4 strain_1_08 /strain_1_08
49 50 finished Al4 strain_1_1 /strain_1_1

projectpath \
0 /home/surendralal/
1 /home/surendralal/
2 /home/surendralal/
3 /home/surendralal/
4 /home/surendralal/
5 /home/surendralal/
6 /home/surendralal/
7 /home/surendralal/
8 /home/surendralal/
9 /home/surendralal/
10 /home/surendralal/
11 /home/surendralal/
12 /home/surendralal/
13 /home/surendralal/
14 /home/surendralal/
15 /home/surendralal/
16 /home/surendralal/
17 /home/surendralal/
18 /home/surendralal/
19 /home/surendralal/
20 /home/surendralal/
21 /home/surendralal/
22 /home/surendralal/
23 /home/surendralal/
24 /home/surendralal/
25 /home/surendralal/
26 /home/surendralal/
27 /home/surendralal/
28 /home/surendralal/
29 /home/surendralal/
30 /home/surendralal/
31 /home/surendralal/
32 /home/surendralal/
33 /home/surendralal/
34 /home/surendralal/
35 /home/surendralal/
36 /home/surendralal/
37 /home/surendralal/
38 /home/surendralal/

(continues on next page)

46 Chapter 4. Citing

pyiron Documentation, Release 0.2.17

(continued from previous page)

39 /home/surendralal/
40 /home/surendralal/
41 /home/surendralal/
42 /home/surendralal/
43 /home/surendralal/
44 /home/surendralal/
45 /home/surendralal/
46 /home/surendralal/
47 /home/surendralal/
48 /home/surendralal/
49 /home/surendralal/

→˓ project \
0 programs/pyiron/notebooks/potential_scan/Al_Mg_
→˓Mendelev_eam/
1 programs/pyiron/notebooks/potential_scan/Al_Mg_Mendelev_eam/
→˓murn_Al_hdf5/
2 programs/pyiron/notebooks/potential_scan/Al_Mg_Mendelev_eam/
→˓murn_Al_hdf5/
3 programs/pyiron/notebooks/potential_scan/Al_Mg_Mendelev_eam/
→˓murn_Al_hdf5/
4 programs/pyiron/notebooks/potential_scan/Al_Mg_Mendelev_eam/
→˓murn_Al_hdf5/
5 programs/pyiron/notebooks/potential_scan/Al_Mg_Mendelev_eam/
→˓murn_Al_hdf5/
6 programs/pyiron/notebooks/potential_scan/Al_Mg_Mendelev_eam/
→˓murn_Al_hdf5/
7 programs/pyiron/notebooks/potential_scan/Al_Mg_Mendelev_eam/
→˓murn_Al_hdf5/
8 programs/pyiron/notebooks/potential_scan/Al_Mg_Mendelev_eam/
→˓murn_Al_hdf5/
9 programs/pyiron/notebooks/potential_scan/Al_Mg_Mendelev_eam/
→˓murn_Al_hdf5/
10 programs/pyiron/notebooks/potential_scan/Al_Mg_Mendelev_eam/
→˓murn_Al_hdf5/
11 programs/pyiron/notebooks/potential_scan/Al_Mg_Mendelev_eam/
→˓murn_Al_hdf5/
12 programs/pyiron/notebooks/potential_scan/Zope_
→˓Ti_Al_2003_eam/
13 programs/pyiron/notebooks/potential_scan/Zope_Ti_Al_2003_eam/
→˓murn_Al_hdf5/
14 programs/pyiron/notebooks/potential_scan/Zope_Ti_Al_2003_eam/
→˓murn_Al_hdf5/
15 programs/pyiron/notebooks/potential_scan/Zope_Ti_Al_2003_eam/
→˓murn_Al_hdf5/
16 programs/pyiron/notebooks/potential_scan/Zope_Ti_Al_2003_eam/
→˓murn_Al_hdf5/
17 programs/pyiron/notebooks/potential_scan/Zope_Ti_Al_2003_eam/
→˓murn_Al_hdf5/
18 programs/pyiron/notebooks/potential_scan/Zope_Ti_Al_2003_eam/
→˓murn_Al_hdf5/
19 programs/pyiron/notebooks/potential_scan/Zope_Ti_Al_2003_eam/
→˓murn_Al_hdf5/
20 programs/pyiron/notebooks/potential_scan/Zope_Ti_Al_2003_eam/
→˓murn_Al_hdf5/
21 programs/pyiron/notebooks/potential_scan/Zope_Ti_Al_2003_eam/
→˓murn_Al_hdf5/ (continues on next page)

4.3. Tutorials 47

pyiron Documentation, Release 0.2.17

(continued from previous page)

22 programs/pyiron/notebooks/potential_scan/Zope_Ti_Al_2003_eam/
→˓murn_Al_hdf5/
23 programs/pyiron/notebooks/potential_scan/Zope_Ti_Al_2003_eam/
→˓murn_Al_hdf5/
24 programs/pyiron/notebooks/potential_scan/Al_H_
→˓Ni_Angelo_eam/
25 programs/pyiron/notebooks/potential_scan/Al_H_Ni_Angelo_eam/
→˓murn_Al_hdf5/
26 programs/pyiron/notebooks/potential_scan/Al_H_Ni_Angelo_eam/
→˓murn_Al_hdf5/
27 programs/pyiron/notebooks/potential_scan/Al_H_Ni_Angelo_eam/
→˓murn_Al_hdf5/
28 programs/pyiron/notebooks/potential_scan/Al_H_Ni_Angelo_eam/
→˓murn_Al_hdf5/
29 programs/pyiron/notebooks/potential_scan/Al_H_Ni_Angelo_eam/
→˓murn_Al_hdf5/
30 programs/pyiron/notebooks/potential_scan/Al_H_Ni_Angelo_eam/
→˓murn_Al_hdf5/
31 programs/pyiron/notebooks/potential_scan/Al_H_Ni_Angelo_eam/
→˓murn_Al_hdf5/
32 programs/pyiron/notebooks/potential_scan/Al_H_Ni_Angelo_eam/
→˓murn_Al_hdf5/
33 programs/pyiron/notebooks/potential_scan/Al_H_Ni_Angelo_eam/
→˓murn_Al_hdf5/
34 programs/pyiron/notebooks/potential_scan/Al_H_Ni_Angelo_eam/
→˓murn_Al_hdf5/
35 programs/pyiron/notebooks/potential_scan/Al_H_Ni_Angelo_eam/
→˓murn_Al_hdf5/
36 programs/pyiron/notebooks/potential_scan/2018__Dickel_D_E__Mg_Al_Zn__
→˓LAMMPS__ipr1/
37 programs/pyiron/notebooks/potential_scan/2018__Dickel_D_E__Mg_Al_Zn__LAMMPS__ipr1/
→˓murn_Al_hdf5/
38 programs/pyiron/notebooks/potential_scan/2000__Landa_A__Al_Pb__
→˓LAMMPS__ipr1/
39 programs/pyiron/notebooks/potential_scan/2000__Landa_A__Al_Pb__LAMMPS__ipr1/
→˓murn_Al_hdf5/
40 programs/pyiron/notebooks/potential_scan/2000__Landa_A__Al_Pb__LAMMPS__ipr1/
→˓murn_Al_hdf5/
41 programs/pyiron/notebooks/potential_scan/2000__Landa_A__Al_Pb__LAMMPS__ipr1/
→˓murn_Al_hdf5/
42 programs/pyiron/notebooks/potential_scan/2000__Landa_A__Al_Pb__LAMMPS__ipr1/
→˓murn_Al_hdf5/
43 programs/pyiron/notebooks/potential_scan/2000__Landa_A__Al_Pb__LAMMPS__ipr1/
→˓murn_Al_hdf5/
44 programs/pyiron/notebooks/potential_scan/2000__Landa_A__Al_Pb__LAMMPS__ipr1/
→˓murn_Al_hdf5/
45 programs/pyiron/notebooks/potential_scan/2000__Landa_A__Al_Pb__LAMMPS__ipr1/
→˓murn_Al_hdf5/
46 programs/pyiron/notebooks/potential_scan/2000__Landa_A__Al_Pb__LAMMPS__ipr1/
→˓murn_Al_hdf5/
47 programs/pyiron/notebooks/potential_scan/2000__Landa_A__Al_Pb__LAMMPS__ipr1/
→˓murn_Al_hdf5/
48 programs/pyiron/notebooks/potential_scan/2000__Landa_A__Al_Pb__LAMMPS__ipr1/
→˓murn_Al_hdf5/
49 programs/pyiron/notebooks/potential_scan/2000__Landa_A__Al_Pb__LAMMPS__ipr1/
→˓murn_Al_hdf5/

(continues on next page)

48 Chapter 4. Citing

pyiron Documentation, Release 0.2.17

(continued from previous page)

timestart timestop totalcputime \
0 2020-05-01 14:20:15.185926 2020-05-01 14:20:52.212726 37.0
1 2020-05-01 14:20:16.872239 2020-05-01 14:20:18.199291 1.0
2 2020-05-01 14:20:20.376998 2020-05-01 14:20:21.474685 1.0
3 2020-05-01 14:20:23.410323 2020-05-01 14:20:24.454505 1.0
4 2020-05-01 14:20:26.407384 2020-05-01 14:20:27.448024 1.0
5 2020-05-01 14:20:29.389853 2020-05-01 14:20:30.457648 1.0
6 2020-05-01 14:20:32.440577 2020-05-01 14:20:33.587692 1.0
7 2020-05-01 14:20:35.659606 2020-05-01 14:20:36.717203 1.0
8 2020-05-01 14:20:39.247825 2020-05-01 14:20:40.631913 1.0
9 2020-05-01 14:20:43.093369 2020-05-01 14:20:44.365442 1.0
10 2020-05-01 14:20:46.700972 2020-05-01 14:20:47.809129 1.0
11 2020-05-01 14:20:49.872971 2020-05-01 14:20:51.002065 1.0
12 2020-05-01 14:20:52.854206 2020-05-01 14:21:40.211332 47.0
13 2020-05-01 14:20:54.595238 2020-05-01 14:20:55.863602 1.0
14 2020-05-01 14:20:58.465134 2020-05-01 14:20:59.616677 1.0
15 2020-05-01 14:21:02.323952 2020-05-01 14:21:03.842627 1.0
16 2020-05-01 14:21:07.120770 2020-05-01 14:21:08.247122 1.0
17 2020-05-01 14:21:10.867935 2020-05-01 14:21:12.084671 1.0
18 2020-05-01 14:21:14.859515 2020-05-01 14:21:15.890379 1.0
19 2020-05-01 14:21:18.333658 2020-05-01 14:21:19.773168 1.0
20 2020-05-01 14:21:23.134672 2020-05-01 14:21:24.701105 1.0
21 2020-05-01 14:21:28.160753 2020-05-01 14:21:29.635477 1.0
22 2020-05-01 14:21:32.177125 2020-05-01 14:21:33.407034 1.0
23 2020-05-01 14:21:36.544373 2020-05-01 14:21:38.079025 1.0
24 2020-05-01 14:21:41.112811 2020-05-01 14:22:14.935040 33.0
25 2020-05-01 14:21:43.292578 2020-05-01 14:21:44.486249 1.0
26 2020-05-01 14:21:46.220651 2020-05-01 14:21:47.239424 1.0
27 2020-05-01 14:21:49.064622 2020-05-01 14:21:50.027115 0.0
28 2020-05-01 14:21:51.711371 2020-05-01 14:21:52.700248 0.0
29 2020-05-01 14:21:54.391263 2020-05-01 14:21:55.421046 1.0
30 2020-05-01 14:21:57.127116 2020-05-01 14:21:58.177664 1.0
31 2020-05-01 14:21:59.836684 2020-05-01 14:22:00.908548 1.0
32 2020-05-01 14:22:02.637902 2020-05-01 14:22:03.654759 1.0
33 2020-05-01 14:22:05.431956 2020-05-01 14:22:06.592121 1.0
34 2020-05-01 14:22:09.286335 2020-05-01 14:22:10.252819 0.0
35 2020-05-01 14:22:12.026812 2020-05-01 14:22:13.233506 1.0
36 2020-05-01 14:22:16.205392 NaT NaN
37 2020-05-01 14:22:19.500822 NaT NaN
38 2020-05-01 14:22:20.918639 2020-05-01 14:22:56.348776 35.0
39 2020-05-01 14:22:23.362886 2020-05-01 14:22:24.543279 1.0
40 2020-05-01 14:22:26.098609 2020-05-01 14:22:27.456331 1.0
41 2020-05-01 14:22:29.355607 2020-05-01 14:22:30.418893 1.0
42 2020-05-01 14:22:32.522105 2020-05-01 14:22:34.234605 1.0
43 2020-05-01 14:22:36.960119 2020-05-01 14:22:38.166629 1.0
44 2020-05-01 14:22:39.686173 2020-05-01 14:22:40.836256 1.0
45 2020-05-01 14:22:42.989847 2020-05-01 14:22:44.268105 1.0
46 2020-05-01 14:22:46.008623 2020-05-01 14:22:47.372670 1.0
47 2020-05-01 14:22:49.144214 2020-05-01 14:22:50.153294 1.0
48 2020-05-01 14:22:51.746560 2020-05-01 14:22:52.772483 1.0
49 2020-05-01 14:22:54.390591 2020-05-01 14:22:55.348395 0.0

computer hamilton hamversion parentid masterid
0 pyiron@cmdell17#1#11/11 Murnaghan 0.3.0 None NaN
1 pyiron@cmdell17#1 Lammps 0.1 None 1.0
2 pyiron@cmdell17#1 Lammps 0.1 None 1.0
3 pyiron@cmdell17#1 Lammps 0.1 None 1.0

(continues on next page)

4.3. Tutorials 49

pyiron Documentation, Release 0.2.17

(continued from previous page)

4 pyiron@cmdell17#1 Lammps 0.1 None 1.0
5 pyiron@cmdell17#1 Lammps 0.1 None 1.0
6 pyiron@cmdell17#1 Lammps 0.1 None 1.0
7 pyiron@cmdell17#1 Lammps 0.1 None 1.0
8 pyiron@cmdell17#1 Lammps 0.1 None 1.0
9 pyiron@cmdell17#1 Lammps 0.1 None 1.0
10 pyiron@cmdell17#1 Lammps 0.1 None 1.0
11 pyiron@cmdell17#1 Lammps 0.1 None 1.0
12 pyiron@cmdell17#1#11/11 Murnaghan 0.3.0 None NaN
13 pyiron@cmdell17#1 Lammps 0.1 None 13.0
14 pyiron@cmdell17#1 Lammps 0.1 None 13.0
15 pyiron@cmdell17#1 Lammps 0.1 None 13.0
16 pyiron@cmdell17#1 Lammps 0.1 None 13.0
17 pyiron@cmdell17#1 Lammps 0.1 None 13.0
18 pyiron@cmdell17#1 Lammps 0.1 None 13.0
19 pyiron@cmdell17#1 Lammps 0.1 None 13.0
20 pyiron@cmdell17#1 Lammps 0.1 None 13.0
21 pyiron@cmdell17#1 Lammps 0.1 None 13.0
22 pyiron@cmdell17#1 Lammps 0.1 None 13.0
23 pyiron@cmdell17#1 Lammps 0.1 None 13.0
24 pyiron@cmdell17#1#11/11 Murnaghan 0.3.0 None NaN
25 pyiron@cmdell17#1 Lammps 0.1 None 25.0
26 pyiron@cmdell17#1 Lammps 0.1 None 25.0
27 pyiron@cmdell17#1 Lammps 0.1 None 25.0
28 pyiron@cmdell17#1 Lammps 0.1 None 25.0
29 pyiron@cmdell17#1 Lammps 0.1 None 25.0
30 pyiron@cmdell17#1 Lammps 0.1 None 25.0
31 pyiron@cmdell17#1 Lammps 0.1 None 25.0
32 pyiron@cmdell17#1 Lammps 0.1 None 25.0
33 pyiron@cmdell17#1 Lammps 0.1 None 25.0
34 pyiron@cmdell17#1 Lammps 0.1 None 25.0
35 pyiron@cmdell17#1 Lammps 0.1 None 25.0
36 pyiron@cmdell17#1#1/11 Murnaghan 0.3.0 None NaN
37 pyiron@cmdell17#1 Lammps 0.1 None 37.0
38 pyiron@cmdell17#1#11/11 Murnaghan 0.3.0 None NaN
39 pyiron@cmdell17#1 Lammps 0.1 None 39.0
40 pyiron@cmdell17#1 Lammps 0.1 None 39.0
41 pyiron@cmdell17#1 Lammps 0.1 None 39.0
42 pyiron@cmdell17#1 Lammps 0.1 None 39.0
43 pyiron@cmdell17#1 Lammps 0.1 None 39.0
44 pyiron@cmdell17#1 Lammps 0.1 None 39.0
45 pyiron@cmdell17#1 Lammps 0.1 None 39.0
46 pyiron@cmdell17#1 Lammps 0.1 None 39.0
47 pyiron@cmdell17#1 Lammps 0.1 None 39.0
48 pyiron@cmdell17#1 Lammps 0.1 None 39.0
49 pyiron@cmdell17#1 Lammps 0.1 None 39.0

50 Chapter 4. Citing

pyiron Documentation, Release 0.2.17

Analysis using PyironTables

The idea now is to go over all finished Murnaghan jobs and extract the equilibrium lattice parameter and bulk modulus,
and classify them based of the potential used.

Defining filter functions

Since a project can have thousands if not millions of jobs, it is necessary to “filter” the data and only apply the functions
(some of which can be computationally expensive) to only this data. In this example, we need to filter jobs that are
finished and are of type Murnaghan. This can be done in two ways: using the job table i.e. the entries in the database,
or using the job itself i.e. using entries in the stored HDF5 file. Below are examples of filter functions acting on the
job and the job table respectively.

[6]: # Filtering using the database entries (which are obtained as a pandas Dataframe)
def db_filter_function(job_table):

Returns a pandas Series of boolean values (True for entries that have status
→˓finished

and hamilton type Murnaghan.)
return (job_table.status == "finished") & (job_table.hamilton == "Murnaghan")

Filtering based on the job
def job_filter_function(job):

returns a boolean value if the status of the job
#is finished and if "murn" is in it's job name
return (job.status == "finished") & ("murn" in job.job_name)

Obviously, using the database is faster in this case but sometimes it might be necessary to filter based on some data
that are stored in the HDF5 file of the job. The database filter is applied first followed by the job based filter.

Defining functions that act on jobs

Now we define a set of functions that will be applied on each job to return a certain value. The filtered jobs will be
loaded and these functions will be applied on the loaded jobs. The advantage of such functions is that the jobs do
not have to be loaded every time such operations are performed. The filtered jobs are loaded once, and then they are
passed to these functions to construct the table.

[7]: # Getting equilibrium lattice parameter from Murnaghan jobs
def get_lattice_parameter(job):

return job["output/equilibrium_volume"] ** (1/3)

Getting equilibrium bulk modulus from Murnaghan jobs
def get_bm(job):

return job["output/equilibrium_bulk_modulus"]

Getting the potential used in each Murnaghan job
def get_pot(job):

child = job.project.inspect(job["output/id"][0])
return child["input/potential/Name"]

4.3. Tutorials 51

pyiron Documentation, Release 0.2.17

Creating a pyiron table

Now that all the functions are defined, the pyiron table called “table” is created in the following way. This works like
a job and can be reloaded at any time.

[8]: %%time
creating a pyiron table
table = pr.create_table("table")

assigning a database filter function
table.db_filter_function = db_filter_function

Alternatively/additionally, a job based filter function can be applied
(it does the same thing in this case).

#table.filter_function = job_filter_function

Adding the functions using the labels you like
table.add["a_eq"] = get_lattice_parameter
table.add["bulk_modulus"] = get_bm
table.add["potential"] = get_pot
Running the table to generate the data
table.run(run_again=True)

0%| | 0/4 [00:00<?, ?it/s]

The job table was saved and received the ID: 51

100%|| 4/4 [00:00<00:00, 20.91it/s]
2020-05-01 14:22:57,257 - pyiron_log - WARNING - The job table is being loaded
→˓instead of running. To re-run use the argument 'run_again=True'

CPU times: user 531 ms, sys: 156 ms, total: 688 ms
Wall time: 725 ms

The output can now be obtained as a pandas DataFrame

[9]: table.get_dataframe()

[9]: job_id a_eq bulk_modulus potential
0 1 4.045415 89.015487 Al_Mg_Mendelev_eam
1 13 4.049946 80.836779 Zope_Ti_Al_2003_eam
2 25 4.049954 81.040445 Al_H_Ni_Angelo_eam
3 39 4.031246 78.213776 2000--Landa-A--Al-Pb--LAMMPS--ipr1

You can now compare the computed equilibrium lattice constants for each potential to those computed in the NIST
database for Al (fcc phase). https://www.ctcms.nist.gov/potentials/system/Al/#Al.

[]:

52 Chapter 4. Citing

https://www.ctcms.nist.gov/potentials/system/Al/#Al

pyiron Documentation, Release 0.2.17

4.3.5 Phonopy in pyiron

We will use the quasi-harmonic approximation (via PyIron’s implementation of the popular phonopy package) to
evaluate look at thermal expansion and self-diffusion in Aluminium

[1]: # Generic imports
from pyiron.project import Project
import numpy as np
%matplotlib inline
import matplotlib.pylab as plt
import seaborn as sns

[2]: pr = Project("PhonopyExample")
pot = 'Al_Mg_Mendelev_eam'
pr.remove_jobs(recursive=True)

Helper functions

Because repeating code is evil.

[3]: def make_phonopy_job(template_job, name):
"""
Create a phonopy job from a reference job.

Args:
template_job (pyiron job): The job to copy.
name (str): What to call this new job.

Returns:
A new phonopy job.

"""
project = template_job.project

What I want:
job_type = template_job.job_type
What I have to do instead:
job_type = pr.job_type.Lammps

ref = project.create_job(job_type, name + "_ref")
ref.structure = template_job.get_final_structure().copy()
ref.potential = template_job.potential

phono = project.create_job(pr.job_type.PhonopyJob, name)
phono.ref_job = ref
return phono

[4]: def scale_structure(struct, scale):
"""
Rescale the atomic positions and cell of a structure simultaneously.
Accepts rescaling by an arbitrary real-valued 3x3 numpy array, but a float can be

→˓given
for isotropic rescaling.

Args:
struct (Structure object): The structure to rescale.

(continues on next page)

4.3. Tutorials 53

pyiron Documentation, Release 0.2.17

(continued from previous page)

scale (float or np.array(3,3)): The matrix to rescale by. (float -> isotropic.
→˓)

Returns:
A rescaled copy of the structure.

..TODO: Double check that the scaling matrix still spans 3-space (determinant
→˓check?)

"""
if isinstance(scale, float) or isinstance(scale, int):

scale_mat = scale * np.eye(3)
else:

assert(scale.shape == (3,3))
scale_mat = scale.T

new_struct = struct.copy()
new_struct.cell = np.dot(struct.cell, scale_mat)
new_struct.positions = np.dot(struct.positions, scale_mat)
return new_struct

[5]: def scale_array(arr, scaler=None, new_range=1.):
"""
Linearly transforms an array so that values equal to the minimum and maximum of

→˓the
`scaler` array are mapped to the range (0, `new_range`). Note that rescaled

→˓values can
still lie outside this range if the orignal values of `arr` are outside the

→˓bounds of
`scaler`.

Args:
arr (np.array): Array to rescale.
scaler (np.array): Array by which to rescale. Default is `arr`.
new_range (float): New value for data which was the size `np.amax(scaler)`.
Default is 1.

"""
if scaler is None:

scaler = arr
return new_range * (arr - np.amin(scaler)) / np.ptp(scaler)

Thermal Expansion

What does the QHA say the lattice constant is as a function of temperature?

[6]: pr_te = pr.create_group("ThermalExpansion")

54 Chapter 4. Citing

pyiron Documentation, Release 0.2.17

Relax the unit cell

If we were doing VASP instead it would be important to do the least computation as possible, so here we’ll start by
relaxing a simple unit cell to turn into a supercell later.

[7]: job_unit = pr_te.create_job(pr.job_type.Lammps, "UnitCell")

[8]: basis = pr_te.create_structure("Al", "fcc", 4.04)

[9]: job_unit.structure = basis
job_unit.potential = pot

[10]: job_unit.calc_minimize(pressure=0.0)
job_unit.run()

The job UnitCell was saved and received the ID: 3596380

[11]: basis_rel = job_unit.get_final_structure()

Relax the bulk supercell

A relaxation which should take zero steps given our starting position!

[12]: job_bulk_1 = pr_te.create_job(pr.job_type.Lammps, "Bulk_1")
The _1 here refers to the fact that the volume has been rescaled by a factor of "1.0
→˓"
(i.e. it hasn't been rescaled)

[13]: n_reps = 3
job_bulk_1.structure = basis_rel.repeat(rep=n_reps)
job_bulk_1.potential = pot

[14]: job_bulk_1.structure.plot3d();

_ColormakerRegistry()

[15]: job_bulk_1.calc_minimize(pressure=0.0)
job_bulk_1.run()

The job Bulk_1 was saved and received the ID: 3596381

Calculate phonons

Run phonopy on the bulk supercell

[16]: phono_bulk_1 = make_phonopy_job(job_bulk_1, "PhonoBulk_1")

[17]: phono_bulk_1.run()
Run performs a whole bunch of child calculations
Each one has the positions slightly deformed in the symmetry-appropriate ways needed
to get the phonon properties

4.3. Tutorials 55

pyiron Documentation, Release 0.2.17

The job PhonoBulk_1 was saved and received the ID: 3596382
The job supercell_phonon_0 was saved and received the ID: 3596383

[18]: # Let's see what we got...
T_min = 0
T_max = 800 # a bit below melting
T_step = 25
temperatures = np.linspace(T_min, T_max, int((T_max - T_min) / T_step))
tp_bulk_1 = phono_bulk_1.get_thermal_properties(temperatures=temperatures)
`get_thermal_properties` uses the displacements and forces to generate phonon
→˓information

[19]: U_bulk_1 = job_bulk_1.output.energy_pot[-1]
Fvib_bulk_1 = tp_bulk_1.free_energies
plt.plot(temperatures, U_bulk_1 + Fvib_bulk_1)
plt.xlabel("Temperature [K]")
plt.ylabel("Free energy ($U+F_{vib}$) [eV]")

[19]: Text(0, 0.5, 'Free energy ($U+F_{vib}$) [eV]')

Calculate thermal expansivity

Above we have the (QHA approximation to the) free energy as a function of temperature at a fixed volume. To evaluate
the thermal expansivity, we need to create the entire F(V,T) surface. To get this, we just loop over jobs like the above,
but scaled to have different lattice constants.

[20]: # According to Wikipedia, the thermal expansivity is about 0.0023% / Kelvin
So at our maximum temperature, we expect around 1.8% expansion
scale_min = 0.995
scale_max = 1.02
scale_step = 0.002
scales = np.linspace(scale_min, scale_max, int((scale_max - scale_min) / scale_step))

[21]: # Let's keep things clean by making another sub-directory
pr_scales = pr_te.create_group("ScanScales")

56 Chapter 4. Citing

pyiron Documentation, Release 0.2.17

[22]: # Loop the phonon calculation over all the volumes
sc_bulk_rel = job_bulk_1.get_final_structure()
bulk_free_energies = np.zeros((len(scales), len(temperatures)))

for i, scale in enumerate(scales):
name_tail = "_{}".format(str(scale).replace(".", "_"))

Make a bulk job with the rescaled structure
(already relaxed, by symmetry won't change, calc static will be enough)
job_bulk = pr_scales.create_job(pr.job_type.Lammps, "Bulk" + name_tail)
job_bulk.potential = pot
job_bulk.structure = scale_structure(sc_bulk_rel, scale)
job_bulk.calc_static()
job_bulk.run()
U = job_bulk.output.energy_tot[-1]

Use that job as a reference for a phonopy job
phono_bulk = make_phonopy_job(job_bulk, "PhonoBulk" + name_tail)
phono_bulk.run()
tp_bulk = phono_bulk.get_thermal_properties(temperatures=temperatures)
Fvib = tp_bulk.free_energies

Fill in the row of free energies for this volume
bulk_free_energies[i] = Fvib + U

The job Bulk_0_995 was saved and received the ID: 3596385
The job PhonoBulk_0_995 was saved and received the ID: 3596386
The job supercell_phonon_0 was saved and received the ID: 3596387
The job Bulk_0_9972727272727273 was saved and received the ID: 3596388
The job PhonoBulk_0_9972727272727273 was saved and received the ID: 3596389
The job supercell_phonon_0 was saved and received the ID: 3596390
The job Bulk_0_9995454545454545 was saved and received the ID: 3596394
The job PhonoBulk_0_9995454545454545 was saved and received the ID: 3596400
The job supercell_phonon_0 was saved and received the ID: 3596405
The job Bulk_1_0018181818181817 was saved and received the ID: 3596418
The job PhonoBulk_1_0018181818181817 was saved and received the ID: 3596419
The job supercell_phonon_0 was saved and received the ID: 3596420
The job Bulk_1_0040909090909091 was saved and received the ID: 3596434
The job PhonoBulk_1_0040909090909091 was saved and received the ID: 3596436
The job supercell_phonon_0 was saved and received the ID: 3596439
The job Bulk_1_0063636363636363 was saved and received the ID: 3596449
The job PhonoBulk_1_0063636363636363 was saved and received the ID: 3596450
The job supercell_phonon_0 was saved and received the ID: 3596451
The job Bulk_1_0086363636363636 was saved and received the ID: 3596456
The job PhonoBulk_1_0086363636363636 was saved and received the ID: 3596458
The job supercell_phonon_0 was saved and received the ID: 3596461
The job Bulk_1_010909090909091 was saved and received the ID: 3596473
The job PhonoBulk_1_010909090909091 was saved and received the ID: 3596475
The job supercell_phonon_0 was saved and received the ID: 3596478
The job Bulk_1_0131818181818182 was saved and received the ID: 3596488
The job PhonoBulk_1_0131818181818182 was saved and received the ID: 3596490
The job supercell_phonon_0 was saved and received the ID: 3596494
The job Bulk_1_0154545454545454 was saved and received the ID: 3596505
The job PhonoBulk_1_0154545454545454 was saved and received the ID: 3596507
The job supercell_phonon_0 was saved and received the ID: 3596510
The job Bulk_1_0177272727272728 was saved and received the ID: 3596521
The job PhonoBulk_1_0177272727272728 was saved and received the ID: 3596523
The job supercell_phonon_0 was saved and received the ID: 3596526

(continues on next page)

4.3. Tutorials 57

pyiron Documentation, Release 0.2.17

(continued from previous page)

The job Bulk_1_02 was saved and received the ID: 3596537
The job PhonoBulk_1_02 was saved and received the ID: 3596539
The job supercell_phonon_0 was saved and received the ID: 3596542

[23]: # The lattice constant is probably a more informative value than the 0K-relative
→˓strain
latts = basis_rel.cell[0][0] * scales

[24]: # At each temperature, find the optimal volume by a simple quadratic fit
...Wait, which order fit will be good enough? Let's just spot-check
free_en = bulk_free_energies[:, -1]
plt.plot(latts, free_en, color='b', label='data')

We'll plot the fit on a much denser mesh
fit_deg = 4
p = np.polyfit(latts, free_en, deg=fit_deg)
dense_latts = np.linspace(np.amin(latts), np.amax(latts), 1000)
#dense_latts = np.linspace(0, 10, 1000)
plt.plot(dense_latts, np.polyval(p=p, x=dense_latts), color='r', label='fit')
plt.xlabel('Lattice constant [$\mathrm{\AA}$]')
plt.ylabel('Bulk free energy [eV/supercell]')
plt.legend()
Ok, a fourth-order fit seems perfectly reasonable

[24]: <matplotlib.legend.Legend at 0x2b61a42bf278>

[25]: # Now find optimal temperatures
best_latts = np.zeros(len(temperatures))
best_latt_guess = basis_rel.cell[0][0]
for i, T in enumerate(temperatures):

free_en = bulk_free_energies[:, i]
p = np.polyfit(latts, free_en, deg=fit_deg)
extrema = np.roots(np.polyder(p, m=1)).real # Find where first-derivative is zero
best_latts[i] = extrema[np.argmin(np.abs(extrema - best_latt_guess))]

[26]: # Check that they're resonable
print(best_latt_guess, '\n', best_latts)

58 Chapter 4. Citing

pyiron Documentation, Release 0.2.17

4.045270475668763
[4.05946291 4.05949371 4.05987201 4.06083718 4.06226186 4.06396024
4.06579637 4.06768361 4.06956868 4.0714193 4.07321635 4.07494901
4.07661182 4.07820271 4.07972185 4.08117076 4.08255184 4.08386799
4.08512237 4.08631821 4.08745877 4.0885472 4.08958656 4.09057975
4.0915295 4.09243842 4.09330892 4.09414326 4.09494357 4.09571182
4.09644984 4.09715935]

[27]: # Let's look at the landscape
fig, ax = plt.subplots()
sns.heatmap(bulk_free_energies, ax=ax, cmap="coolwarm",

xticklabels=['{:,.0f}'.format(T) for T in temperatures],
yticklabels=['{:,.2f}'.format(a) for a in latts])

ax.set_xlabel("Temperature [K]")
ax.set_ylabel("Lattice constant [$\mathrm{\AA}$]")

Overlaying the optimal path takes a couple changes of variables
since the heatmap is plotting integer cells

ax.plot(scale_array(temperatures, new_range=len(temperatures)),
scale_array(best_latts, scaler=latts, new_range=len(latts)),
color='k')

[27]: [<matplotlib.lines.Line2D at 0x2b61d9e8ee80>]

4.3. Tutorials 59

pyiron Documentation, Release 0.2.17

Vacancies and diffusion

Another common use of QHA is to calculate the pre-factor for migration in a diffusion event.

In particular, the diffusion jump barrier looks like 𝜔0 = 𝜈⋆0 exp(−𝐻m/𝑘B𝑇), where 𝜈⋆0 =
∏︀3𝑁−3

𝑖=1 𝜈IS𝑖 /
∏︀3𝑁−4

𝑖=1 𝜈TS
𝑖 ,

with IS and TS indicating the initial and transition states, respectively. Note that the transition state is missing a single
frequency, which is from the instability of the transition state. It’s either an imaginary mode, which I think means a
negative frequency. Meanwhile, 𝐻m is the enthalpic barrier (difference between the initial and transition states) and
𝑘B𝑇 is the usual thermal energy term.

Typically, these sorts of investigations use the nudged elastic band (NEB) to find the 0K transition state. You can do
that with our new flexible jobs, but we’ll save that for later. For now we’ll just “approximate” the transition state with
a simple linear interpolation.

Stable vacancy structures

Let’s start by generating and relaxing the initial and final states

[28]: pr_vac = pr.create_group("Vacancies")

[29]: # Find two adjacent sites
print(job_bulk_1.structure.positions[0])
print(job_bulk_1.structure.positions[1])
Yep, 1 and 2 will do

[0. 0. 0.]
[2.02263524 2.02263524 0.]

[30]: job_vac_i = pr_vac.create_job(pr.job_type.Lammps, "VacancyInitial")
job_vac_f = pr_vac.create_job(pr.job_type.Lammps, "VacancyFinal")

job_vac_i.potential = pot
job_vac_f.potential = pot

[31]: sc_vac_i = sc_bulk_rel.copy()
sc_vac_i.pop(0)
job_vac_i.structure = sc_vac_i

sc_vac_f = sc_bulk_rel.copy()
sc_vac_f.pop(1)
job_vac_f.structure = sc_vac_f

[32]: # Relax the new vacancy structures
job_vac_i.calc_minimize(pressure=0.0)
job_vac_i.run()

job_vac_f.calc_minimize(pressure=0.0)
job_vac_f.run()

The job VacancyInitial was saved and received the ID: 3596547
The job VacancyFinal was saved and received the ID: 3596549

60 Chapter 4. Citing

pyiron Documentation, Release 0.2.17

DOS

The PyIron implementation of phonopy makes it very easy to look at the DOS. Let’s see what the effect is of introduc-
ing a vacancy, and confirm that our two vacancies are equivalent.

[33]: phon_vac_i = make_phonopy_job(job_vac_i, "PhonoVacInitial")
phon_vac_f = make_phonopy_job(job_vac_f, "PhonoVacFinal")

[34]: phon_vac_i.run()
tp_vac_i = phon_vac_i.get_thermal_properties(temperatures=temperatures)

phon_vac_f.run()
tp_vac_f = phon_vac_i.get_thermal_properties(temperatures=temperatures)

Note that the vacancy structures spawn many more child processes
This is because the vacancy structure has lower symmetry

The job PhonoVacInitial was saved and received the ID: 3596552
The job supercell_phonon_0 was saved and received the ID: 3596554
The job supercell_phonon_1 was saved and received the ID: 3596556
The job supercell_phonon_2 was saved and received the ID: 3596559
The job supercell_phonon_3 was saved and received the ID: 3596561
The job supercell_phonon_4 was saved and received the ID: 3596564
The job supercell_phonon_5 was saved and received the ID: 3596566
The job supercell_phonon_6 was saved and received the ID: 3596569
The job supercell_phonon_7 was saved and received the ID: 3596571
The job supercell_phonon_8 was saved and received the ID: 3596573
The job supercell_phonon_9 was saved and received the ID: 3596576
The job supercell_phonon_10 was saved and received the ID: 3596578
The job supercell_phonon_11 was saved and received the ID: 3596580
The job supercell_phonon_12 was saved and received the ID: 3596582
The job supercell_phonon_13 was saved and received the ID: 3596585
The job supercell_phonon_14 was saved and received the ID: 3596587
The job supercell_phonon_15 was saved and received the ID: 3596589
The job supercell_phonon_16 was saved and received the ID: 3596592
The job supercell_phonon_17 was saved and received the ID: 3596594
The job supercell_phonon_18 was saved and received the ID: 3596597
The job supercell_phonon_19 was saved and received the ID: 3596599
The job supercell_phonon_20 was saved and received the ID: 3596601
The job PhonoVacFinal was saved and received the ID: 3596613
The job supercell_phonon_0 was saved and received the ID: 3596616
The job supercell_phonon_1 was saved and received the ID: 3596618
The job supercell_phonon_2 was saved and received the ID: 3596620
The job supercell_phonon_3 was saved and received the ID: 3596623
The job supercell_phonon_4 was saved and received the ID: 3596625
The job supercell_phonon_5 was saved and received the ID: 3596628
The job supercell_phonon_6 was saved and received the ID: 3596630
The job supercell_phonon_7 was saved and received the ID: 3596632
The job supercell_phonon_8 was saved and received the ID: 3596635
The job supercell_phonon_9 was saved and received the ID: 3596637
The job supercell_phonon_10 was saved and received the ID: 3596640
The job supercell_phonon_11 was saved and received the ID: 3596642
The job supercell_phonon_12 was saved and received the ID: 3596644
The job supercell_phonon_13 was saved and received the ID: 3596646
The job supercell_phonon_14 was saved and received the ID: 3596649
The job supercell_phonon_15 was saved and received the ID: 3596651
The job supercell_phonon_16 was saved and received the ID: 3596653

(continues on next page)

4.3. Tutorials 61

pyiron Documentation, Release 0.2.17

(continued from previous page)

The job supercell_phonon_17 was saved and received the ID: 3596655
The job supercell_phonon_18 was saved and received the ID: 3596658
The job supercell_phonon_19 was saved and received the ID: 3596659
The job supercell_phonon_20 was saved and received the ID: 3596660

[35]: fig, ax = plt.subplots()
phono_bulk_1.plot_dos(ax=ax, color='b', label='bulk')
phon_vac_i.plot_dos(ax=ax, color='r', label='vac_i')
phon_vac_f.plot_dos(ax=ax, color='orange', label='vac_f')
plt.legend()

[35]: <matplotlib.legend.Legend at 0x2b61da20bcc0>

Attack frequency

Now we get the attack frequency by comparing the individual phonon spectra of initial and transition states

[36]: # Interpolate initial and final positions to guesstimate the transition state
sc_vac_ts = sc_vac_i.copy()
sc_vac_ts.positions = 0.5 * (sc_vac_i.positions + sc_vac_f.positions)

[37]: job_vac_ts = pr_vac.create_job(pr.job_type.Lammps, "VacancyTransition")
job_vac_ts.potential = pot
job_vac_ts.structure = sc_vac_ts

[38]: # We _don't_ relax this job, or it would fall into the initial or final state!
job_vac_ts.calc_static()
job_vac_ts.run()

The job VacancyTransition was saved and received the ID: 3596670

[39]: phon_vac_ts = make_phonopy_job(job_vac_ts, "PhonoVacTransition")

62 Chapter 4. Citing

pyiron Documentation, Release 0.2.17

[40]: phon_vac_ts.run()
tp_vac_ts = phon_vac_ts.get_thermal_properties(temperatures=temperatures)

The job PhonoVacTransition was saved and received the ID: 3596673
The job supercell_phonon_0 was saved and received the ID: 3596676
The job supercell_phonon_1 was saved and received the ID: 3596678
The job supercell_phonon_2 was saved and received the ID: 3596681
The job supercell_phonon_3 was saved and received the ID: 3596683
The job supercell_phonon_4 was saved and received the ID: 3596686
The job supercell_phonon_5 was saved and received the ID: 3596688
The job supercell_phonon_6 was saved and received the ID: 3596691
The job supercell_phonon_7 was saved and received the ID: 3596693
The job supercell_phonon_8 was saved and received the ID: 3596695
The job supercell_phonon_9 was saved and received the ID: 3596698
The job supercell_phonon_10 was saved and received the ID: 3596700
The job supercell_phonon_11 was saved and received the ID: 3596703
The job supercell_phonon_12 was saved and received the ID: 3596705
The job supercell_phonon_13 was saved and received the ID: 3596707
The job supercell_phonon_14 was saved and received the ID: 3596709
The job supercell_phonon_15 was saved and received the ID: 3596712
The job supercell_phonon_16 was saved and received the ID: 3596714
The job supercell_phonon_17 was saved and received the ID: 3596716
The job supercell_phonon_18 was saved and received the ID: 3596719
The job supercell_phonon_19 was saved and received the ID: 3596721
The job supercell_phonon_20 was saved and received the ID: 3596723
The job supercell_phonon_21 was saved and received the ID: 3596726
The job supercell_phonon_22 was saved and received the ID: 3596728
The job supercell_phonon_23 was saved and received the ID: 3596731
The job supercell_phonon_24 was saved and received the ID: 3596733
The job supercell_phonon_25 was saved and received the ID: 3596735
The job supercell_phonon_26 was saved and received the ID: 3596738
The job supercell_phonon_27 was saved and received the ID: 3596740
The job supercell_phonon_28 was saved and received the ID: 3596742
The job supercell_phonon_29 was saved and received the ID: 3596744
The job supercell_phonon_30 was saved and received the ID: 3596746
The job supercell_phonon_31 was saved and received the ID: 3596749
The job supercell_phonon_32 was saved and received the ID: 3596751
The job supercell_phonon_33 was saved and received the ID: 3596754
The job supercell_phonon_34 was saved and received the ID: 3596756
The job supercell_phonon_35 was saved and received the ID: 3596758
The job supercell_phonon_36 was saved and received the ID: 3596760
The job supercell_phonon_37 was saved and received the ID: 3596762
The job supercell_phonon_38 was saved and received the ID: 3596765
The job supercell_phonon_39 was saved and received the ID: 3596767
The job supercell_phonon_40 was saved and received the ID: 3596769
The job supercell_phonon_41 was saved and received the ID: 3596772
The job supercell_phonon_42 was saved and received the ID: 3596774
The job supercell_phonon_43 was saved and received the ID: 3596776
The job supercell_phonon_44 was saved and received the ID: 3596778
The job supercell_phonon_45 was saved and received the ID: 3596781
The job supercell_phonon_46 was saved and received the ID: 3596782
The job supercell_phonon_47 was saved and received the ID: 3596783
The job supercell_phonon_48 was saved and received the ID: 3596784
The job supercell_phonon_49 was saved and received the ID: 3596785
The job supercell_phonon_50 was saved and received the ID: 3596786
The job supercell_phonon_51 was saved and received the ID: 3596788
The job supercell_phonon_52 was saved and received the ID: 3596790
The job supercell_phonon_53 was saved and received the ID: 3596792

(continues on next page)

4.3. Tutorials 63

pyiron Documentation, Release 0.2.17

(continued from previous page)

The job supercell_phonon_54 was saved and received the ID: 3596794
The job supercell_phonon_55 was saved and received the ID: 3596796
The job supercell_phonon_56 was saved and received the ID: 3596798
The job supercell_phonon_57 was saved and received the ID: 3596799
The job supercell_phonon_58 was saved and received the ID: 3596801
The job supercell_phonon_59 was saved and received the ID: 3596803
The job supercell_phonon_60 was saved and received the ID: 3596806
The job supercell_phonon_61 was saved and received the ID: 3596808
The job supercell_phonon_62 was saved and received the ID: 3596810
The job supercell_phonon_63 was saved and received the ID: 3596813
The job supercell_phonon_64 was saved and received the ID: 3596815
The job supercell_phonon_65 was saved and received the ID: 3596817
The job supercell_phonon_66 was saved and received the ID: 3596819
The job supercell_phonon_67 was saved and received the ID: 3596822
The job supercell_phonon_68 was saved and received the ID: 3596824
The job supercell_phonon_69 was saved and received the ID: 3596826
The job supercell_phonon_70 was saved and received the ID: 3596829
The job supercell_phonon_71 was saved and received the ID: 3596831
The job supercell_phonon_72 was saved and received the ID: 3596833
The job supercell_phonon_73 was saved and received the ID: 3596836
The job supercell_phonon_74 was saved and received the ID: 3596838
The job supercell_phonon_75 was saved and received the ID: 3596842
The job supercell_phonon_76 was saved and received the ID: 3596846
The job supercell_phonon_77 was saved and received the ID: 3596850
The job supercell_phonon_78 was saved and received the ID: 3596855
The job supercell_phonon_79 was saved and received the ID: 3596858
The job supercell_phonon_80 was saved and received the ID: 3596863
The job supercell_phonon_81 was saved and received the ID: 3596866
The job supercell_phonon_82 was saved and received the ID: 3596869
The job supercell_phonon_83 was saved and received the ID: 3596874
The job supercell_phonon_84 was saved and received the ID: 3596878
The job supercell_phonon_85 was saved and received the ID: 3596881
The job supercell_phonon_86 was saved and received the ID: 3596885
The job supercell_phonon_87 was saved and received the ID: 3596890
The job supercell_phonon_88 was saved and received the ID: 3596894
The job supercell_phonon_89 was saved and received the ID: 3596898
The job supercell_phonon_90 was saved and received the ID: 3596902
The job supercell_phonon_91 was saved and received the ID: 3596907
The job supercell_phonon_92 was saved and received the ID: 3596911
The job supercell_phonon_93 was saved and received the ID: 3596915
The job supercell_phonon_94 was saved and received the ID: 3596920

[41]: # The transition state has an imaginary mode (frequency < 0), let's see it
fig, ax = plt.subplots()
phon_vac_i.plot_dos(ax=ax, color='r', label='initial')
phon_vac_ts.plot_dos(ax=ax, color='b', label='transition')
plt.legend()

[41]: <matplotlib.legend.Legend at 0x2b61db5474e0>

64 Chapter 4. Citing

pyiron Documentation, Release 0.2.17

To calculate the attack frequency, we’ll ignore both the negative mode of the transition state (which we were warned
about in the equation), as well as the three frequencies which correspond to rigid translation and are very near zero,
and sometimes dip to be negative. Phonopy sorts the frequencies by magnitude, so we can just skip the first three and
four for the initial and transition states, respectively. We take them at q=0.

[42]: freq_i = phon_vac_i.phonopy.get_frequencies(0)[3:]
freq_ts = phon_vac_i.phonopy.get_frequencies(0)[4:]

[43]: print(np.prod(freq_i))

6.870675816849329e+236

Recall: 𝜈⋆0 =
∏︀3𝑁−3

𝑖=1 𝜈IS𝑖 /
∏︀3𝑁−4

𝑖=1 𝜈TS
𝑖

[44]: # Products are dangerous beasts, so we'll do a little numeric magic
nu = np.prod(freq_i[:-1] / freq_ts) * freq_i[-1]
print("Attack frequency is ", nu, "THz (10^-12 s)")

Attack frequency is 2.6826827779812032 THz (10^-12 s)

Mantina et al. (PRL 2008) report 𝜈 = 19.3 THz using DFT and NEB, so our linearly-interpolated “transition state”
with EAM is actually not doing so poorly.

There are many more things you can do with phonopy, including looking directly at the force constants, the Hessian
matrix, etc. But hopefully this is a useful starting point.

[]:

4.3. Tutorials 65

pyiron Documentation, Release 0.2.17

4.3.6 Workfunction of hcp (0001) surfaces

In this notebook, we will show how to calculate the workfunction of selected hcp(0001) surfaces using VASP. Please
keep in mind that the parameters used here give no converged results. They have been chosen to demonstrate the
workflow using inexpensive calculations. For converged results, parameters such as lattice parameters, plane-wave
energy cutoffs, reciprocal space sampling or the need to perform spin polarized calculations have to be carefully
chosen

[1]: import numpy as np
%matplotlib inline
import matplotlib.pylab as plt
import pandas as pd
import time

[2]: from pyiron.project import Project

[3]: pr = Project("hcp_workfunction")

Calculating the Workfunction of Mg(0001)

Structure creation

We use the create_surface() function which uses the ASE surface generator to build our surface slab structure

[4]: # Now we set-up the Mg (0001) surface
a = 3.1919
c = 5.1852

Vacuum region to break the periodicity along the z-axis
vac = 10
size = (2, 2, 4)
Mg_0001 = pr.create_surface("Mg",

surface_type="hcp0001",
size=size,
a=a,
c=c,
orthogonal=True,
vacuum=vac)

Mg_0001.plot3d()

NGLWidget()

Using selective dynamics

We use selective dynamics to restrict relaxation to the surface atoms (first and last Mg layers). We use the advanced
array indexing options available in the NumPy package (see here) to detect which atoms are at the surface and then
freeze the rest

[5]: # Initially freeze all the atoms
Mg_0001.add_tag(selective_dynamics=[False, False, False])

Find which atoms are at the surface
(based on the z-coordinate)

(continues on next page)

66 Chapter 4. Citing

https://www.vasp.at/
https://docs.scipy.org/doc/numpy-1.13.0/reference/arrays.indexing.html

pyiron Documentation, Release 0.2.17

(continued from previous page)

pos_z = Mg_0001.positions[:, 2]
z_min, z_max = np.min(pos_z), np.max(pos_z)
eps = 1e-4
relax_indices = np.argwhere(((pos_z - eps) > z_min)

& ((pos_z + eps) < z_max))
relax_indices = relax_indices.flatten()

Now allow these atoms to relax

Mg_0001.selective_dynamics[relax_indices] = [True, True, True]

Setup and execution

To automate the calculation we define a function that has as input the project object, structure, job_name, Fermi
smearing width, the type of k-point sampling and the plane-wave energy cutoff

[6]: def get_ham(proj, basis, name, sigma=0.1, mesh="GP", encut=350):
ham = proj.create_job(pr.job_type.Vasp, name)
ham.set_convergence_precision(electronic_energy=1e-7,

ionic_energy=1e-2)
Setting fermi-smearing
ham.set_occupancy_smearing(smearing="fermi", width=sigma)
Ionic_minimization
ham.calc_minimize(ionic_steps=100,

electronic_steps=60,
retain_electrostatic_potential=True,
pressure=None)

ham.structure = basis
ham.set_encut(encut=encut)
if mesh == "GP":

Only the Gamma point
ham.set_kpoints(scheme="GP")

elif len(mesh) == 3:
ham.set_kpoints(mesh=mesh)

return ham

[7]: ham_vasp = get_ham(proj=pr,
basis=Mg_0001,
name="Mg_0001",
sigma=0.1,
mesh="GP",
encut=350)

Submitting to the queue (optional)

If you use a cluster installation of pyiron, you can send the created jobs to the cluster by specifying the name of the
queue and the number of cores

[8]: # queue = ham_vasp.server.list_queues()[-1]
ham_vasp.server.queue = queue
ham_vasp.server.cores = 20

4.3. Tutorials 67

pyiron Documentation, Release 0.2.17

Choosing an appropriate executable

[9]: ham_vasp.executable.available_versions

[9]: ['5.3',
'5.3_col',
'5.3_col_mpi',
'5.3_mpi',
'5.4',
'5.4.4',
'5.4.4_gam',
'5.4.4_gam_mpi',
'5.4.4_mpi',
'5.4.4_ncl',
'5.4.4_ncl_mpi',
'5.4.4_std',
'5.4.4_std_mpi',
'5.4_gamma',
'5.4_gamma_mpi',
'5.4_mpi']

Since this example uses the Γ point only, we can use the VASP Gamma-only version. If you use more k-points choose
an appropriate executable

[10]: ham_vasp.executable.version = "5.4_gamma"

Execution

The job is ready for execution

[11]: ham_vasp.run()

Post processing

To analyze the results we ensure that the job is finished (the if statement in the first line). We then compute the work
function by subtracting the Fermi-level from the vacuum level

Φ = 𝑉𝑣𝑎𝑐 − 𝜖𝐹

[12]: if ham_vasp.status.finished:
Get the electrostatic potential
epot = ham_vasp.get_electrostatic_potential()

Compute the lateral average along the z-axis (ind=2)
epot_z = epot.get_average_along_axis(ind=2)

Get the final relaxed structure from the simulation
struct = ham_vasp.get_structure(iteration_step=-1)
r = np.linalg.norm(struct.cell[2])
z = np.linspace(0, r, len(epot_z))

Computing the vacuum-level
vac_level = np.max(epot_z)

(continues on next page)

68 Chapter 4. Citing

pyiron Documentation, Release 0.2.17

(continued from previous page)

Get the electronic structure
es = ham_vasp.get_electronic_structure()
print("wf:", vac_level - es.efermi)
plt.plot(z, epot_z - vac_level)
plt.xlim(0, r)
plt.axhline(es.efermi - vac_level,

color="black",
linestyle="dashed")

plt.xlabel("z (\AA)")
plt.ylabel("V - V$_{vac}$");

wf: 3.37343565133

Looping over a series of hcp(0001) surfaces

We now repeat the workflow for a set of hcp metals (the chosen lattice parameters are approximate). Note that if
you use the same naming convention, pyiron detects that a job with the same name exists (“Mg_0001”) and loads the
output from this calculation rather than launch a new job with the same name.

[13]: hcp_dict = {"Zn": {"a":2.6649, "c": 4.9468},
"Mg": {"a": 3.1919, "c": 5.1852},
"Co": {"a": 2.5071 , "c": 4.0695},
"Ru": {"a": 2.7059 , "c": 4.2815}}

[14]: vac = 10
size = (2, 2, 4)
for element, lattice_parameters in hcp_dict.items():

surf = pr.create_surface(element,
surface_type="hcp0001",
size=size,
a=lattice_parameters["a"],
c=lattice_parameters["c"],
orthogonal=True, vacuum=vac)

surf.add_tag(selective_dynamics=[False, False, False])
pos_z = surf.positions[:, 2]
z_min, z_max = np.min(pos_z), np.max(pos_z)

(continues on next page)

4.3. Tutorials 69

pyiron Documentation, Release 0.2.17

(continued from previous page)

eps = 1e-4
relax_indices = np.argwhere(((pos_z - eps) > z_min)

& ((pos_z + eps) < z_max))
relax_indices = relax_indices.flatten()
surf.selective_dynamics[relax_indices] = [True, True, True]
job_name = "{}_0001".format(element)
ham = get_ham(pr, surf,

name=job_name,
sigma=0.1,
mesh="GP",
encut=350)

#ham.server.cores = 20
#ham.server.queue = queue
ham.executable.version = '5.4_gamma'
ham.run()

Loading and analyzing

Now we iterate over all jobs in this project and calculate the workfunction. We also time how long the cell takes to
execute

[15]: t1 = time.time()
for ham in pr.iter_jobs():

if ham.status.finished:
final_struct = ham.get_structure(iteration_step=-1)
elec_structure = ham.get_electronic_structure()
e_Fermi = elec_structure.efermi
epot = ham.get_electrostatic_potential()
epot_z = epot.get_average_along_axis(ind=2)
vacuum_level = np.max(epot_z)
wf = vacuum_level - e_Fermi
element = final_struct.get_majority_species()[-1]
hcp_dict[element]["work_func"] = wf

t2 = time.time()
print("time: {}s".format(t2-t1))

time: 9.250723838806152s

Compiling data in a table using pandas

[16]: df = pd.DataFrame(hcp_dict).T
df = df.rename(columns={'a': 'a [A]',

'c': 'c [A]',
'work_func': 'wf [eV]'})

print(df.round(3))

a [A] c [A] wf [eV]
Co 2.507 4.069 5.569
Mg 3.192 5.185 3.373
Ru 2.706 4.282 5.305
Zn 2.665 4.947 3.603

[]:

70 Chapter 4. Citing

pyiron Documentation, Release 0.2.17

4.3.7 Molecular dynamics simulations of bulk water

In this example, we show how to perform molecular dynamics of bulk water using the popular interatomic TIP3P
potential (W. L. Jorgensen et. al.) and LAMMPS.

[1]: import numpy as np
%matplotlib inline
import matplotlib.pylab as plt
from pyiron.project import Project
import ase.units as units
import pandas

[2]: pr = Project("tip3p_water")

Creating the initial structure

We will setup a cubic simulation box consisting of 27 water molecules density density is 1 g/cm3. The target density
is achieved by determining the required size of the simulation cell and repeating it in all three spatial dimensions

[3]: density = 1.0e-24 # g/A^3
n_mols = 27
mol_mass_water = 18.015 # g/mol

Determining the supercell size size
mass = mol_mass_water * n_mols / units.mol # g
vol_h2o = mass / density # in A^3
a = vol_h2o ** (1./3.) # A

Constructing the unitcell
n = int(round(n_mols ** (1. / 3.)))

dx = 0.7
r_O = [0, 0, 0]
r_H1 = [dx, dx, 0]
r_H2 = [-dx, dx, 0]
unit_cell = (a / n) * np.eye(3)
water = pr.create_atoms(elements=['H', 'H', 'O'],

positions=[r_H1, r_H2, r_O],
cell=unit_cell)

water.set_repeat([n, n, n])
water.plot3d()

_ColormakerRegistry()

NGLWidget()

[4]: water.get_chemical_formula()

[4]: 'H54O27'

4.3. Tutorials 71

https://doi.org/10.1063/1.445869
http://lammps.sandia.gov/

pyiron Documentation, Release 0.2.17

Equilibrate water structure

The initial water structure is obviously a poor starting point and requires equilibration (Due to the highly artificial
structure a MD simulation with a standard time step of 1fs shows poor convergence). Molecular dynamics using a
time step that is two orders of magnitude smaller allows us to generate an equilibrated water structure. We use the
NVT ensemble for this calculation:

[5]: water_potential = pandas.DataFrame({
'Name': ['H2O_tip3p'],
'Filename': [[]],
'Model': ["TIP3P"],
'Species': [['H', 'O']],
'Config': [['# @potential_species H_O ### species in potential\n', '# W.L.

→˓Jorgensen et.al., The Journal of Chemical Physics 79, 926 (1983); https://doi.org/
→˓10.1063/1.445869\n', '#\n', '\n', 'units real\n', 'dimension 3\n', 'atom_style full\
→˓n', '\n', '# create groups ###\n', 'group O type 2\n', 'group H type 1\n', '\n', '#
→˓# set charges - beside manually ###\n', 'set group O charge -0.830\n', 'set group H
→˓charge 0.415\n', '\n', '### TIP3P Potential Parameters ###\n', 'pair_style lj/cut/
→˓coul/long 10.0\n', 'pair_coeff * * 0.0 0.0 \n', 'pair_coeff 2 2 0.102 3.188 \n',
→˓'bond_style harmonic\n', 'bond_coeff 1 450 0.9572\n', 'angle_style harmonic\n',
→˓'angle_coeff 1 55 104.52\n', 'kspace_style pppm 1.0e-5\n', '\n']]
})

[6]: job_name = "water_slow"
ham = pr.create_job("Lammps", job_name)
ham.structure = water
ham.potential = water_potential

/srv/conda/envs/notebook/lib/python3.7/site-packages/pyiron/lammps/base.py:170:
→˓UserWarning: WARNING: Non-'metal' units are not fully supported. Your calculation
→˓should run OK, but results may not be saved in pyiron units.
"WARNING: Non-'metal' units are not fully supported. Your calculation should run OK,

→˓ but "

[7]: ham.calc_md(temperature=300,
n_ionic_steps=1e4,
time_step=0.01)

ham.run()

The job water_slow was saved and received the ID: 1

[8]: view = ham.animate_structure()
view

NGLWidget(max_frame=100)

Full equilibration

At the end of this simulation, we have obtained a structure that approximately resembles water. Now we increase the
time step to get a reasonably equilibrated structure

[9]: # Get the final structure from the previous simulation
struct = ham.get_structure(iteration_step=-1)
job_name = "water_fast"
ham_eq = pr.create_job("Lammps", job_name)
ham_eq.structure = struct

(continues on next page)

72 Chapter 4. Citing

pyiron Documentation, Release 0.2.17

(continued from previous page)

ham_eq.potential = water_potential
ham_eq.calc_md(temperature=300,

n_ionic_steps=1e4,
n_print=10,
time_step=1)

ham_eq.run()

The job water_fast was saved and received the ID: 2

[10]: view = ham_eq.animate_structure()
view

NGLWidget(max_frame=1000)

We can now plot the trajectories

[11]: plt.plot(ham_eq["output/generic/energy_pot"])
plt.xlabel("Steps")
plt.ylabel("Potential energy [eV]");

[12]: plt.plot(ham_eq["output/generic/temperature"])
plt.xlabel("Steps")
plt.ylabel("Temperature [K]");

4.3. Tutorials 73

pyiron Documentation, Release 0.2.17

Structure analysis

We will now use the get_neighbors() function to determine structural properties from the computed trajectories.
We take advantage of the fact that the TIP3P water model is a rigid water model which means the neighbors of each
molecule never change. Therefore they need to be indexed only once

[13]: final_struct = ham_eq.get_structure(iteration_step=-1)

Get the indices based on species
O_indices = final_struct.select_index("O")
H_indices = final_struct.select_index("H")

Getting only the first two neighbors
neighbors = final_struct.get_neighbors(num_neighbors=2)

Distribution of the O-H bond length

Every O atom has two H atoms as immediate neighbors. The distribution of this bond length is obtained by:

[14]: bins = np.linspace(0.5, 1.5, 100)
plt.hist(neighbors.distances[O_indices].flatten(), bins=bins)
plt.xlim(0.5, 1.5)
plt.xlabel(r"d$_{OH}$ [\AA]")
plt.ylabel("Count");

74 Chapter 4. Citing

pyiron Documentation, Release 0.2.17

Distribution of the O-O bond lengths

We need to extend the analysis to go beyond nearest neighbors. We do this by controlling the cutoff distance

[15]: neighbors = final_struct.get_neighbors(cutoff_radius=8)

[16]: neigh_indices = np.hstack(neighbors.indices[O_indices])
neigh_distances = np.hstack(neighbors.distances[O_indices])

One is often intended in an element specific pair correlation function. To obtain for example, the O-O coordination
function, we do the following:

[17]: # Getting the neighboring Oxyhen indices
O_neigh_indices = np.in1d(neigh_indices, O_indices)
O_neigh_distances = neigh_distances[O_neigh_indices]

[18]: bins = np.linspace(1, 5, 100)
count = plt.hist(O_neigh_distances, bins=bins)
plt.xlim(2, 4)
plt.title("O-O pair correlation")
plt.xlabel(r"d$_{OO}$ [\AA]")
plt.ylabel("Count");

4.3. Tutorials 75

pyiron Documentation, Release 0.2.17

[]:

4.3.8 Importing finished VASP calculations

Finished VASP calculations that were created outside of pyiron can be imported using the following script:

from pyiron.project import Project
pr = Project('imported_jobs')
Searches and imports vasp jobs from 'vasp_directory'
path_to_import = "vasp_directory"
pr.import_from_path(path=path_to_import, recursive=True)

The calculations are imported into the project ‘imported_jobs’. The recursive function imports vasp directories within
each vasp directory if present.

Note: This functionality best works when both the vasprun.xml and OUTCAR files are present in the directories. The
import would work only id the vasprun.xml file exists too. If the vasprun.xml file does not exist, the OUTCAR and
CONTCAR files must be present

4.4 Team

pyiron was initially developed in the Computational Materials Design department of Joerg Neugebauer at the Max
Planck Institut für Eisenforschung/ Max Planck Institute for iron research (MPIE) as a framework for ab initio thermo
dynamics. In collaboration with the Interdisciplinary Centre for Advanced Materials Simulation (ICAMS) the frame-
work was recently extended for high throughput applications resulting in the opensource release of the pyiron.

76 Chapter 4. Citing

https://www.mpie.de/CM
https://www.mpie.de/person/43010/2763386
https://www.mpie.de/2281/en
https://www.mpie.de/2281/en
http://www.icams.de

pyiron Documentation, Release 0.2.17

4.4.1 Core Developer (alphabetical)

• Liam Huber (MPIE) - Leading the implementation of flexible simulation protocols - since 2019.

• Jan Janssen (MPIE) – Leading the pyiron development – since 2015.

• Sudarsan Surendralal (MPIE) – Leading the electronic structure code development – since 2015.

• Osamu Waseda (MPIE) – Leading the run-time coupling of simulation codes – since 2017.

4.4.2 Application Developer (alphabetical)

• Ahmed Aslam (MPIE) - Parameterisation of interatomic potentials - since 2018.

• Uday Gajera (MPIE) - Automated analysis of existing DFT data sets - since 2017.

• Yury Lysogorski (ICAMS) – High throughput evaluation of interatomic potentials – since 2017.

• Lifang Zhu (MPIE) - Efficient approach to compute melting properties fully from ab initio - since 2017.

4.4.3 Steering Committee (Head: Joerg Neugebauer)

• Joerg Neugebauer (MPIE) – Founding and lead developer - since 2010

• Mira Todorova (MPIE), Christoph Freysoldt (MPIE) – Electronic structure features

• Tilmann Hickel (MPIE), Blazej Grabowski (MPIE) – Thermodynamic projects - Thermodynamic concepts

• Ralf Drautz (ICAMS), Thomas Hammerschmidt (ICAMS) – High-throughput activities

4.4.4 Alumni (chronological)

• Ugur Aydin (MPIE) – Developer of pyCMW – the pyiron predecessor – 2011-2015.

• Ankit Gupta (MPIE) – Kinetic Monte Carlo implementation – 2014-2015.

• Murat Celik (MPIE) – Sqlalchemy based database adapter – 2016-2017.

• Navid Shayanfar (MPIE) - Parser for the in-house DFT code S/PHI/nX - 2017.

• Martin Boeckmann (MPIE) – Metropolis Monte Carlo implementation – 2017-2018.

• Murali Uddagiri (MPIE) - Generation of special quasirandom structures - 2017-2018.

• Markus Tautschnig (MPIE) – Structure Optimisation with VASP – 2018-2019.

4.4.5 External collaborators

• Max Planck Computing & Data facility (MPCDF) - The MPCDF provides high-level support for the develop-
ment, optimization, analysis and visualization of high-performance-computing applications.

4.4. Team 77

https://www.mpie.de/person/47229/3098843
https://www.mpie.de/person/42524/2768816
https://www.mpie.de/person/41328/2768816
https://www.mpie.de/person/51628/2768816
http://www.icams.de/content/people/icams-staff-members/?detail=1484
https://www.mpie.de/person/43027/2768816
https://www.mpie.de/CM
https://www.mpie.de/3119070/Corrosion
https://www.mpie.de/DefectChemistrySpectroscopy
https://www.mpie.de/2891195/computational_phase_studies
https://www.mpie.de/2891184/adaptive_structural_materials
http://www.icams.de/content/departments/atomistic-modelling-and-simulation/
http://www.icams.de/content/departments/atomistic-modelling-and-simulation/bond-order-potential-development/
https://www.mpie.de/3389199/Optimized-key-algorithms
http://www.mpcdf.mpg.de

pyiron Documentation, Release 0.2.17

4.5 Collaborators

List of software projects pyiron collaborates with in alphabetical order:

4.5.1 ASE

The Atomic Simulation Environment (ASE) is a set of tools and Python modules for setting up, manipulating, running,
visualizing and analyzing atomistic simulations. The code is freely available under the GNU LGPL license. https:
//wiki.fysik.dtu.dk/ase/

4.5.2 LAMMPS

LAMMPS stands for Large-scale Atomic/Molecular Massively Parallel Simulator. LAMMPS is a classical molecular
dynamics simulation code designed to run efficiently on parallel computers. It was developed at Sandia National
Laboratories, a US Department of Energy facility, with funding from the DOE. It is an open-source code, distributed
freely under the terms of the GNU Public License (GPL). http://lammps.sandia.gov

4.5.3 NGLview

An IPython/Jupyter widget to interactively view molecular structures and trajectories. Utilizes the embeddable NGL
Viewer for rendering. Support for showing data from the file-system, RCSB PDB, simpletraj and from objects of
analysis libraries mdtraj, pytraj, mdanalysis, ParmEd, rdkit, ase, HTMD, biopython, cctbx, pyrosetta, schrodinger’s
Structure. https://github.com/arose/nglview

4.5.4 OpenKIM

OpenKIM is a cyberinfrastructure for improving the reliability of molecular and multiscale simulations of materials.
It includes a repository of interatomic potentials that are exhaustively tested, tools to help select among existing
potentials and develop new ones, and standard integration methods for using potentials in major simulation codes.
Visit the OpenKIM Website.

4.5.5 OVITO

OVITO is a scientific visualization and analysis software for atomistic and particle simulation data. It helps scientists
gain better insights into materials phenomena and physical processes. The program is freely available for all major
platforms under an open source license. It has served in a growing number of computational simulation studies as a
powerful tool to analyze, understand and illustrate simulation results. https://www.ovito.org

4.5.6 S/PHI/nX

S/PHI/nX is a C++ library for materials simulation, mostly electronic-structure theory. It also is a program (sphinx)
to perform such simulations using density-functional theory, and k.p theory. In addition, the package offers dozens
of specialized programs (add-ons) for smaller tasks related to setup, analysis, post-processing, and other types of
simulations. https://sxrepo.mpie.de

78 Chapter 4. Citing

https://wiki.fysik.dtu.dk/ase/
https://wiki.fysik.dtu.dk/ase/
http://lammps.sandia.gov
https://github.com/arose/nglview
https://openkim.org/
https://www.ovito.org
https://sxrepo.mpie.de

pyiron Documentation, Release 0.2.17

4.5.7 VASP

The Vienna Ab initio Simulation Package: atomic scale materials modelling from first principles. https://www.vasp.at

4.6 Command Line Interface

4.6.1 Usage Summary

There’s a few command line tools shipped with pyiron to help administrating and keeping up with your pyiron project
as well as some that are used internally. All of them are installed by default in the pyiron script that has a few sub
commands.

pyiron install Installs the pyiron resources for the first time, if you don’t get them via conda.

pyiron ls list the jobs inside a project and filter them with a few primitives

Print the run time of all finished jobs

pyiron ls -c job totalcputime -s finished

Print all jobs with iron

pyiron ls -e Fe

Print all jobs that successfully finished yesterday and a bit

pyiron ls -s finished -i 1d5h

Print all jobs that were aborted less than 5 hours ago and match “spx.*restart”

pyiron ls -n “spx.*restart” -i 5h -s aborted

pyiron rm Delete jobs and whole projects from the database and the file system. If you simply rm jobs and projects
they are still in the database and can lead to confusion on pyiron’s part.

pyiron wrapper Runs jobs from the database. pyiron uses this internally to start jobs on the remote cluster nodes, but
you can also use it when you set the run mode to “manual” or to manually re-run jobs.

4.6.2 Developer Guide

Adding a new sub command is done by adding a new module to pyiron.cli. This module needs to define a
register and a main function. The former is called with an argparse.ArgumentParser instance as sole
argument and should define the command line interface in the usual way. The latter will be called with the parsed
arguments and should just execute whatever it is that utility should be doing. Additionally if you need to control
the formatter_class and epilog keyword arguments when creating the argparse.ArgumentParser in-
stance you can set the formatter and epilog toplevel variables (see the ls sub command for an example). Finally
you must add the module to the pyiron.cli.cli_modules dict.

4.6. Command Line Interface 79

https://www.vasp.at
https://docs.python.org/3/library/argparse.html

pyiron Documentation, Release 0.2.17

4.7 Citing

The pyiron integrated development environment (IDE) for computational materials science - pyiron IDE - is based on
a flexible plugin infrastructure. So depending on which modules are used please cite the corresponding papers.

4.7.1 pyiron paper (accepted)

@article{pyiron-paper,
title = {pyiron: An integrated development environment for computational materials

→˓science},
journal = {Computational Materials Science},
volume = {163},
pages = {24 - 36},
year = {2019},
issn = {0927-0256},
doi = {https://doi.org/10.1016/j.commatsci.2018.07.043},
url = {http://www.sciencedirect.com/science/article/pii/S0927025618304786},
author = {Jan Janssen and Sudarsan Surendralal and Yury Lysogorskiy and Mira

→˓Todorova and Tilmann Hickel and Ralf Drautz and Jörg Neugebauer},
keywords = {Modelling workflow, Integrated development environment, Complex

→˓simulation protocols},
}

For all the other modules/ plugins in particular those hosted at https://gitlab.mpcdf.mpg.de/pyiron (MPIE internal)
please ask the developers for the corrsponding references. We try to publish those under the open source license when
the initial papers are published. Afterwards they are going to be added to the official Github repository.

4.7.2 external paper

Some of the features in pyiron rely on external codes which should be cited separatly. In alphabetical order:

ASE

pyiron is compatible with the Atomic Simulation Environment (ASE) structure classes, allowing the user to generate
structures using the ASE framework and run the simulation within pyiron.

@article{ase-paper,
author={Ask Hjorth Larsen and Jens Jørgen Mortensen and Jakob Blomqvist and Ivano E

→˓Castelli and Rune Christensen and Marcin Dułak and Jesper Friis and Michael N
→˓Groves and Bjørk Hammer and Cory Hargus and Eric D Hermes and Paul C Jennings and
→˓Peter Bjerre Jensen and James Kermode and John R Kitchin and Esben Leonhard
→˓Kolsbjerg and Joseph Kubal and Kristen Kaasbjerg and Steen Lysgaard and Jón
→˓Bergmann Maronsson and Tristan Maxson and Thomas Olsen and Lars Pastewka and Andrew
→˓Peterson and Carsten Rostgaard and Jakob Schiøtz and Ole Schütt and Mikkel Strange
→˓and Kristian S Thygesen and Tejs Vegge and Lasse Vilhelmsen and Michael Walter and
→˓Zhenhua Zeng and Karsten W Jacobsen},
title={The atomic simulation environment--a Python library for working with atoms},
journal={Journal of Physics: Condensed Matter},
volume={29},
number={27},
pages={273002},
url={http://stacks.iop.org/0953-8984/29/i=27/a=273002},

(continues on next page)

80 Chapter 4. Citing

https://gitlab.mpcdf.mpg.de/pyiron
https://github.com/pyiron
https://wiki.fysik.dtu.dk/ase/index.html
https://wiki.fysik.dtu.dk/ase/index.html

pyiron Documentation, Release 0.2.17

(continued from previous page)

year={2017}
}

LAMMPS

The LAMMPS molecular dynamics simulator is the default molecular dynamics code used by pyiron.

@article{lammps,
title = {Fast Parallel Algorithms for Short-Range Molecular Dynamics},
journal = {Journal of Computational Physics},
volume = {117},
number = {1},
pages = {1-19},
year = {1995},
issn = {0021-9991},
doi = {https://doi.org/10.1006/jcph.1995.1039},
url = {http://www.sciencedirect.com/science/article/pii/S002199918571039X},
author = {Steve Plimpton}

}

VASP

The Vienna Ab initio Simulation Package is the default ab initio used by pyiron.

@article{Kresse1993,
title = {Ab initio molecular dynamics for liquid metals},
author = {Kresse, G. and Hafner, J.},
journal = {Phys. Rev. B},
volume = {47},
issue = {1},
pages = {558--561},
numpages = {0},
month = {Jan},
publisher = {American Physical Society},
doi = {10.1103/PhysRevB.47.558},
url = {https://link.aps.org/doi/10.1103/PhysRevB.47.558}

}

@article{Kresse1996a,
title = {Efficiency of ab-initio total energy calculations for metals and

→˓semiconductors using a plane-wave basis set},
journal = {Computational Materials Science},
volume = {6},
number = {1},
pages = {15-50},
year = {1996},
issn = {0927-0256},
doi = {https://doi.org/10.1016/0927-0256(96)00008-0},
url = {http://www.sciencedirect.com/science/article/pii/0927025696000080},
author = {Kresse, G. and Furthm\"uller, J.}

}

4.7. Citing 81

http://lammps.sandia.gov
https://www.vasp.at

pyiron Documentation, Release 0.2.17

@article{Kresse1996b,
title = {Efficient iterative schemes for ab initio total-energy calculations using

→˓a plane-wave basis set},
author = {Kresse, G. and Furthm\"uller, J.},
journal = {Phys. Rev. B},
volume = {54},
issue = {16},
pages = {11169--11186},
numpages = {0},
year = {1996},
month = {Oct},
publisher = {American Physical Society},
doi = {10.1103/PhysRevB.54.11169},
url = {https://link.aps.org/doi/10.1103/PhysRevB.54.11169}

}

4.8 FAQ

4.8.1 How to cite pyiron?

To cite pyiron and the corresponding codes, please follow the instructions on the publication page.

4.8.2 What units does pyiron use?

• mass = atomic mass units

• distance = Angstroms

• time = femtoseconds

• energy = eV

• velocity = Angstroms/femtoseconds

• force = eV/Angstrom

• temperature = Kelvin

• pressure = GPa

• charge = multiple of electron charge (1.0 is a proton)

4.8.3 How to import existing calculation?

4.8.4 How to import structures from files or existing databases?

4.8.5 How to install pyiron?

pyiron is designed to be installed as centralized service on your local computer cluster, rather than a local installation
on each individual workstation. To test pyiron online or with a local installation, please follow the instructions on the
installation page.

82 Chapter 4. Citing

pyiron Documentation, Release 0.2.17

4.8.6 How to use a custom Pseudo potential in VASP?

4.8.7 How to use VASP tags which are not supported by pyiron?

4.8.8 How to use a custom potential in LAMMPS?

A custom empirical potential (here, a hybrid potential) can be defined in the following format:

custom_potential = pd.DataFrame({
'Name': ['SrTiO3_Pedone'],
'Filename': [[]],
'Model': ['Custom'],
'Species': [['O', 'Sr', 'Ti']],
'Config': [['atom_style full\n', # I use 'full' here as atom_style 'charge' gives

→˓the same result
'## create groups ###\n',
'group O type 1\n',
'group Sr type 2\n',
'group Ti type 3\n',
'\n',
'## set charges - beside manually ###\n',
'set group O charge -1.2000\n',
'set group Sr charge 1.2000\n',
'set group Ti charge 2.4000\n',
'\n',
'pair_style hybrid/overlay morse 15.0 mie/cut 15.0 coul/long 15.0 beck

→˓15.0\n',
'pair_coeff * * coul/long\n',
'pair_coeff 1 2 beck 3.0 0 0 0 0\n',
'pair_coeff 1 3 beck 1.0 0 0 0 0\n',
'pair_coeff 1 1 beck 22.0 0 0 0 0\n',
'pair_coeff 1 2 mie/cut 3.0 1.0 12.0 0\n',
'pair_coeff 1 3 mie/cut 1.0 1.0 12.0 0\n',
'pair_coeff 1 1 mie/cut 22.0 1.0 12.0 0\n',
'pair_coeff 1 2 morse 0.019623 1.8860 3.32833\n',
'pair_coeff 1 3 morse 0.024235 2.2547 2.708943\n',
'pair_coeff 1 1 morse 0.042395 1.3793 3.618701\n',
'kspace_style ewald 1.0e-8\n']]

})

The lines in Config will be written to the LAMMPS potential.inp file. Make sure that the arrangement of the
species in Species is the same as the group types create groups within Config. Otherwise, a mixup or the
species may occur in the LAMMPS structure.inp file.

The potential can then be used by assigning job.potential = custom_potential.

4.8. FAQ 83

pyiron Documentation, Release 0.2.17

4.8.9 How to extend the potential database inside pyiron?

4.8.10 How to link your own executable?

4.8.11 How to send a calculation to the background ?

4.8.12 How to submit a calculation to the queuing system?

4.8.13 How to setup spin constraint calculation?

4.8.14 What is the meaning of the name - pyiron?

pyiron is the combination of py + iron connecting Python, the programming language with iron as pyiron was initially
developed at the Max Planck Institut für Eisenforschung (iron research).

4.8.15 Which output quantities are stored in pyiron?

generic
tag dimension description VASP SPHInX LAMMPS
time Nstep simulation time (fs) x
steps Nstep time steps x
un-
wrapped_positions

Nstep x Natom x
3

unwrapped atom coordinates () x x x

positions Nstep x Natom x
3

wrapped atom coordinates () x x x

velocities Nstep x Natom x
3

velocity of each atom (/fs)

forces Nstep x Natom x
3

force on each atom (eV/) x x x

cells Nstep x 3 x 3 cell dimensions (cf. VASP website) () x x x
energy_tot Nstep total energy of the system (eV) x x x
energy_kin Nstep kinetic energy of the system (eV) x
energy_pot Nstep potential energy of the system (eV) x
pressures Nstep x 3 x 3 pressures (GPa) x
temperature Nstep temperature (K) x x
volume Nstep ? supercell volume (3) x x x
atom_voronoi Nstep x Natom Voronoi volume of each atom (3)
atom_stress Nstep x Natom x

3 x 3
stress per atom x atomic volume (eV) x

atom_centro Nstep x Natom centro-symmetry parameter (2)
atom_displace Nstep x Natom x

3
displacement of each atom with respect to the
initial position ()

computa-
tion_time

Nstep computation time of the simulation (s) x

84 Chapter 4. Citing

pyiron Documentation, Release 0.2.17

dft
tag dimension description VASP SPHInX LAMMPS
(scf_)energy_int Nstep internal energy (eV) x
(scf_)energy_free Nstep free energy, same as energy_tot in

generic (eV)
x x

(scf_)energy_zero Nstep extrapolated energy, sigma 0 (eV) x x
(scf_)energy_band Nstep band gap energy (eV) x
(scf_)residue Nstep (x 2) energy residue (eV) x
atoms_(scf_)spins Nstep x Natom spin moment of each atom (Bohr mag-

neton)
x

(scf_)magnetic_forcesNstep x Natom spin forces ? (eV/Bohr magneton) x
atom_spin_constraintsNstep x Natom spin constraints (Bohr magneton) x
bands_e_fermi Nstep fermi energy (eV) x
bands_occ Nstep (x 2) x Nk x

Nstates

occupancy x

bands_k_weights Nk weight of each k point x
bands_eigen_values Nstep (x 2) x Nk x

Nstates

eigenspectrums (eV) x

scf_convergence Nstep convergence of each ionic step x

• Nstep refers to ionic steps and not electronic steps

• properties preceded by scf_ contain the values of each electronic step except for scf_convergence

• (x 2) refers to the additional column which appears only in magnetic calculations

• if the crosses under VASP, SPHInX or LAMMPS are missing, the corresponding properties are not implemented

4.9 Contributing to pyiron

The following is a set of guidelines for contributing to pyiron, which is hosted and maintained by the Max Planck
Institut für Eisenforschung on GitHub. These are mostly guidelines to facilitate an efficient development workflow,
and not necessarily rules. Use your best judgment, and feel free to propose changes even to this document in a pull
request.

You can find all the pyiron packages at our github page . To create pull requests, you will need to become part of the
pyiron organization. Please email us if you would like to join.

4.9.1 Wait I don’t want to read this; I just have a quick question/bugfix!

1. Check out our FAQ page; your question might already be answered there.

2. If your question relates to a bug in pyiron, please briefly search the issues page and open a new labeled issue if
you don’t see anything related to your question there.

3. Please feel free just to send one of us a brief, descriptive email with your question, and we’ll do our best to get
back to you as ASAP as possible.

4.9. Contributing to pyiron 85

https://mpie.de
https://mpie.de
https://github.com/pyiron
https://github.com/pyiron/pyiron/docs/source/faq.html
https://github.com/pyiron/pyiron/issues

pyiron Documentation, Release 0.2.17

4.9.2 Table of Contents

License

What should I know before I get started?

• pyiron developer meetings

How can I contribute?

• Reporting bugs

• Suggesting enhancements

• Your first code contribution

• Pull requests

Styleguides

• Git commit messages

• Python styleguide

• Documentation styleguide

Additional Notes

• Issue and pull request labels

• Build status

• pyiron releases

Debugging

• My job does not run on the queue

4.9.3 License

pyiron is released as an open-source project under the BSD 3-Clause License. Code contributions should also be
considered open-source.

4.9.4 What should I know before I get started?

pyiron developer meetings

If you are interested in discussing pyiron’s development, we encourage you to virtually participate in the weekly pyiron
developer meeting at 14:00 german time (GMT+2). Check the discussion page for details.

86 Chapter 4. Citing

pyiron Documentation, Release 0.2.17

4.9.5 How can I contribute?

Reporting bugs

Note: If you find a closed issue that seems like it is the same thing that you’re experiencing, open a new
issue and include a link to the original issue in the body of your new one.

Before Submitting A Bug Report

Check if you can reproduce the problem in the latest version of pyiron. Check the FAQ page for a list of common
questions and problems. Briefly search the issues page for bugs to see if the problem has already been reported. If it
has and the issue is still open, add a comment to the existing issue instead of opening a new one.

How Do I Submit A (Good) Bug Report?

Bugs are tracked as GitHub issues. You can create an issue on the pyiron repository by including the following
information:

• Use a clear and descriptive title for the issue to identify the problem.

• Describe the exact steps you took so we can reproduce the problem as closely as possible.

• Provide sample code that causes the problem. Include code snippets as markdown code blocks.

• Include information about the environment (OS, python version, how packages were installed) in which you
were running pyiron.

• Explain what you expected to happen, and what happened instead.

Suggesting Enhancements

How Do I Submit A (Good) Enhancement Suggestion?

Enhancement suggestions are tracked as GitHub issues. You can create an issue on the pyiron repository by including
the following information:

• Use a clear and descriptive title for the issue to identify the suggestion.

• Describe the exact behavior you would expect the suggested feature to produce.

• Provide sample code that you would use to access the feature. If possible, include code for how you think the
feature could be built into pyiron’s codebase. Include code snippets as markdown code blocks.

Your first code contribution

Unsure where to begin contributing to pyiron? You can start by looking through these good-first-issue and help-wanted
issues:

• Good first issues - issues which should only require a few lines of code, and a test or two.

• Help wanted issues - issues which should be a bit more involved than beginner issues.

Local development

pyiron can be developed and tested locally. If you are using pyiron to run an external software package, e.g. VASP or
LAMMPS, you might also need to install those packages locally to run certain integration tests in pyiron.

To get the developmental (git) version of pyiron,

4.9. Contributing to pyiron 87

https://github.com/pyiron/pyiron/docs/source/faq.html
https://github.com/pyiron/pyiron/issues?q=is%3Aopen+is%3Aissue+label%3A%22bug%22
https://github.com/pyiron/pyiron/issues?q=is%3Aopen+is%3Aissue+label%3A%22good+first+issue%22
https://github.com/pyiron/pyiron/issues?q=is%3Aissue+is%3Aopen+label%3A%22help+wanted%22

pyiron Documentation, Release 0.2.17

git clone https://github.com/pyiron/pyiron.git
conda env update --name pyiron_dev --file pyiron/.ci_support/environment.yml
conda activate pyiron_dev
conda install conda-build
conda develop pyiron

Local Testing

The full test suite is always run automatically when you open a new pull request. Still it sometimes nice to run all or
only specific tests on your machine. To do that run from the repo root, e.g.

python -m unittest discover tests
python -m unittest discover tests/sphinx
python -m unittest tests/sphinx/test_base.py

Where the first line runs all tests, the second all the sphinx tests and the final line only the tests in that file. Keep in
mind that to run the tests your repository needs to be inside your pyiron project folder and you need to have at least
the basic resources installed from tests/static. A neat trick when testing/debugging is to combine the pdb and
unittest modules like this

python -m pdb -m unittest ...

This allows you to re-use the sometimes complicated setups for your interactive debugging that might be otherwise
difficult to replicate in a REPL.

Pull requests

The process described here has several goals:

• Maintain pyiron’s quality

• Fix problems that are important to users

• Engage the community in working toward the best possible tools

• Enable a sustainable system for pyiron’s maintainers to review contributions

Please follow these steps to have your contribution considered by the maintainers:

• Keep the changes in your pull request as focused as possible- only address one issue per pull request wherever
possible.

• Follow the Styleguides

• Assign the appropriate label (see Issue and pull request labels) to your pull request. If you are fixing a specific
Github issue, reference the issue directly in the pull request comments.

• If you are aware which maintainer is most closely related to the code you’ve edited, feel free to request their
review.

• After you submit your pull request, verify that all status checks are passing.

• If a status check fails and it seems to be unrelated to your changes, explain why the failure is unrelated as a
comment in your pull request.

While the prerequisites above must be satisfied prior to having your pull request reviewed, the reviewer(s) may ask
you to complete additional design work, tests, or other changes before your pull request can be ultimately accepted.

88 Chapter 4. Citing

pyiron Documentation, Release 0.2.17

4.9.6 Styleguides

Git commit messages

• Use the present tense (“Add feature” not “Added feature”)

• Use the imperative mood (“Move cursor to. . . ” not “Moves cursor to. . . ”)

• Limit the first line to 72 characters or less

• Reference issues and pull requests liberally after the first line

• When only changing documentation, include [ci skip] in the commit title

• Consider starting the commit message with an applicable emoji:

:art: (:art:) improves the format/structure of the code

:zap: (:zap:) improves performance

:memo: (:memo:) adds documentation

:bug: (:bug:) fixes a bug

:fire: (:fire:) removes code or files

:green_heart: (:green_heart:) fixes the CI build

:white_check_mark: (:white_check_mark:) adds tests

Managing git commits is much easier using an IDE (we recommend PyCharm).

Python styleguide

Please follow PEP8 conventions for all python code added to pyiron. Pull requests will be checked for PEP8 plus a
few other security issues with Codacy, and will be rejected if they do not meet the specified formatting criteria.

Any new features should include coverage with a unit test, such that your pull request does not decrease pyiron’s
overall coverage. This will be automatically tested within the ci test suite and Coveralls.

Deprecation warning template

XXX is deprecated as of vers. A.B.C. It is not guaranteed to be in service in vers. D.E.F

Documentation styleguide

All new/modified functions should include a docstring that follows the Google Python Docstring format.

Documentation is built automatically with Sphinx; any manually created documentation should be added as a restruc-
tured text (.rst) file under pyiron/docs/source.

Notebooks created to exemplify features in pyiron are very useful, and can even be used as integration tests. If you
have added a major feature, consider creating a notebook to show its usage under pyiron/notebooks/. See the other
examples that are already there.

4.9. Contributing to pyiron 89

https://www.python.org/dev/peps/pep-0008/
https://www.codacy.com/
https://coveralls.io/
http://sphinxcontrib-napoleon.readthedocs.io/en/latest/example_google.html
https://www.sphinx-doc.org/en/master/

pyiron Documentation, Release 0.2.17

4.9.7 Additional notes

Issue and pull request labels

We use the following tags to organize pyiron Github issues and pull requests:

• bug: something isn’t working

• duplicate: this issue/pull request already existed

• enhancement: new feature or request

• good first issue: easy fix for beginners

• help wanted: extra attention is needed

• invalid: this doesn’t seem right

• question: further information is requested

• wontfix: this will not be worked on

• stale: inactive after 2 weeks

Build status

The build status for pyiron and all sub packages are given below

pyiron releases

For the pyiron release management we use git tags:

https://git-scm.com/book/en/v2/Git-Basics-Tagging

The tag format consists of a tag_prefix (<package name>-) and the release version, for example:

pyiron-0.2.0

For the automated versioning we use:

https://github.com/warner/python-versioneer/

So the configuration of the release is included in setup.cfg:

https://github.com/pyiron/pyiron_base/blob/master/setup.cfg

As the pyiron packages are pure python packages – we use only the Linux Python 3.7 job to build the packages, as
defined in the .travis.yml file:

90 Chapter 4. Citing

https://coveralls.io/github/pyiron/pyiron?branch=master
https://app.codacy.com/app/pyiron-runner/pyiron?utm_source=github.com&utm_medium=referral&utm_content=pyiron/pyiron&utm_campaign=Badge_Grade_Settings
https://anaconda.org/conda-forge/pyiron/
https://travis-ci.org/pyiron/pyiron
https://ci.appveyor.com/project/pyiron-runner/pyiron/branch/master
https://anaconda.org/conda-forge/pyiron/

pyiron Documentation, Release 0.2.17

https://github.com/pyiron/pyiron_base/blob/master/.travis.yml

The python 3.7 linux tests therefore takes more time, compared to the other tests on travis.

Just like each other commit to the master branch the tagged releases are pushed to pypi.org and anaconda.org:

https://pypi.org/project/pyiron-base/#history
https://anaconda.org/pyiron/pyiron_base

The major difference for pypi (pip) is that tagged releases are the default for pip while installing prerelease versions
using pip requires the –pre flag. pip install –pre pyiron

Those pre-release versions are named <version_number>.post0.dev<release number>

0.2.0.post0.dev1

For anaconda the prereleases are pushed to the pyiron channel and can be installed using: conda install -c pyiron
pyiron

On the other hand the tagged releases are available through conda-forge, as soon as the corresponding packages are
merged:

https://github.com/conda-forge/pyiron-feedstock
conda install -c conda-forge pyiron

So for both conda and pip both the prereleases as well as the official releases are available.

4.9.8 Debugging

My job does not run on the queue

In case a job runs properly while executing it locally (or on the head node), but not when you submit it to a queue,

1. Check if the job class is available in the project:

In this example, we want a custom job class ProtoMD from the module pyiron_contrib:

from pyiron import Project
import pyiron_contrib # only if importing a custom job class

pr = Project("debug")
dir(pr.job_type)

This should output:

>>> ['AtomisticExampleJob',
'Atoms',
'ConvEncutParallel',
...
...
'ProtoMD']

If you see your job class in the list, proceed to step 3. If not,

2. Check if the job class in initialized in ``__init__.py`` of the module

Make sure that the __init__.py of your module (here, pyiron_contrib) initializes the job class in the follow-
ing format:

4.9. Contributing to pyiron 91

pyiron Documentation, Release 0.2.17

from pyiron import Project
from pyiron.base.job.jobtype import JOB_CLASS_DICT

Make classes available for new pyiron version
JOB_CLASS_DICT['ProtoMD'] = 'pyiron_contrib.protocol.compound.md' # the path of your
→˓job class

3. Confirm that the job class can be instantiatied

Create a new job, but instead of running it, save it:

job = pr.create_job(job_type = pr.job_type.ProtoMD, job_name = 'job')
... # input parameters that the job requires
...
job.save()

>>> 98 # this is the job id of the saved job

Note down the job id, then run the following line:

job["TYPE"]

This should output an instance of the job class:

>>> "<class 'pyiron_contrib.protocol.compound.md.ProtoMD'>"

Now we know that the job class is indeed available in the project and can be instantiated.

4. Debug using a second notebook

Submitting and running a job on the queue, is essentially the same as saving a job in one notebook, but loading and
executing it in another notebook.

In a new notebook , load the job that you just saved, using its job id. You may or may not import the module (here,
pyiron_conntirb):

from pyiron import Project
we do not import pyiron_contrib here, becasue it should not be necessary

pr = Project("second_notebook")
reloaded_job = pr.load(98) # 98 is the job id of the previously saved job
reloaded_job.run(run_again=True)

If the job loads and runs properly, the job should also run properly on the queue. This also means that there may be a
bug in your custom job class. Debug the job class, and repeat steps 3 and 4 till you no longer get an error in step 4.

92 Chapter 4. Citing

	Explore pyiron
	Join the development
	News
	Citing
	About
	Installation
	Tutorials
	Team
	Collaborators
	Command Line Interface
	Citing
	FAQ
	Contributing to pyiron

